This article presents a novel bonding method for chip packaging applications in the semiconductor industry, with a focus on downsizing high-density and 3D-stacked interconnections to improve efficiency and performance. Microfluidic electroless interconnections have been identified as a potential solution for bonding pillar joints at low temperatures and pressures. However, the complex and time-consuming nature of their production process hinders their suitability for mass production.
View Article and Find Full Text PDFMicrochannels with integrated pillars have enhanced the production capabilities and performance of various applications due to their high surface-to-volume ratio. However, emerging gas bubbles can become trapped, potentially limiting the functionality or efficiency of the device when scaled down to the low-micrometer scale. Understanding the conditions required to dislodge these bubbles is thus critical for optimizing microfluidic devices with complex physical behaviors.
View Article and Find Full Text PDF