Background: Magnetic resonance neurography (MRN) is increasingly used as a diagnostic tool for peripheral neuropathies. Quantitative measures enhance MRN interpretation but require nerve segmentation which is time-consuming and error-prone and has not become clinical routine. In this study, we applied neural networks for the automated segmentation of peripheral nerves.
View Article and Find Full Text PDFBackground And Purpose: The novel MR imaging technique of vascular architecture mapping allows in vivo characterization of local changes in cerebral microvasculature, but reference ranges for vascular architecture mapping parameters in healthy brain tissue are lacking, limiting its potential applicability as an MR imaging biomarker in clinical practice. We conducted whole-brain vascular architecture mapping in a large cohort to establish vascular architecture mapping parameter references ranges and identify region-specific cortical and subcortical microvascular profiles.
Materials And Methods: This was a single-center examination of adult patients with unifocal, stable low-grade gliomas with multiband spin- and gradient-echo EPI sequence at 3T using parallel imaging.
Background And Purpose: It is unknown whether changes to the peripheral nervous system following spinal cord injury (SCI) are relevant for functional recovery or the development of neuropathic pain below the level of injury. Magnetic resonance neurography (MRN) at 3 T allows detection and localization of structural and functional nerve damage. This study aimed to combine MRN and clinical assessments in individuals with chronic SCI and nondisabled controls.
View Article and Find Full Text PDFContext: Due to the heterogenous clinical symptoms and deficits, the diagnosis of diabetic polyneuropathy (DPN) is still difficult in clinical routines, leading to increased morbidity and mortality.
Objective: We studied the correlation of phase angle (PhA) of bioelectrical impedance analysis (BIA) with clinical, laboratory, and physical markers of DPN to evaluate PhA as a possible diagnostic method for DPN.
Materials And Methods: In this cross-sectional observational study as part of the Heidelberg Study on Diabetes and Complications, we examined 104 healthy individuals and 205 patients with type 2 diabetes mellitus (T2D), among which 63 had DPN.
Background: Previous studies on magnetic resonance neurography (MRN) found different patterns of structural nerve damage in type 1 diabetes (T1D) and type 2 diabetes (T2D). Magnetization transfer ratio (MTR) is a quantitative technique to analyze the macromolecular tissue composition. We compared MTR values of the sciatic nerve in patients with T1D, T2D, and healthy controls (HC).
View Article and Find Full Text PDFAims/hypothesis: Quantitative sensory testing (QST) allows the identification of individuals with rapid progression of diabetic sensorimotor polyneuropathy (DSPN) based on certain sensory phenotypes. Hence, the aim of this study was to investigate the relationship of these phenotypes with the structural integrity of the sciatic nerve among individuals with type 2 diabetes.
Methods: Seventy-six individuals with type 2 diabetes took part in this cross-sectional study and underwent QST of the right foot and high-resolution magnetic resonance neurography including diffusion tensor imaging of the right distal sciatic nerve to determine the sciatic nerve fractional anisotropy (FA) and cross-sectional area (CSA), both of which serve as markers of structural integrity of peripheral nerves.
Context: Insulin-mediated microvascular permeability and blood flow of skeletal muscle appears to be altered in the condition of insulin resistance. Previous studies on this effect used invasive procedures in humans or animals.
Objective: The aim of this study was to demonstrate the feasibility of a noninvasive assessment of human muscle microcirculation via dynamic contrast-enhanced (DCE)-magnetic resonance imaging (MRI) of skeletal muscle in patients with type 2 diabetes (T2D).
Introduction/aims: Diabetic small fiber neuropathy (SFN) is caused by damage to thinly myelinated A‑fibers (δ) and unmyelinated C‑fibers. This study aimed to assess associations between quantitative sensory testing (QST) and parameters of peripheral nerve perfusion obtained from dynamic contrast enhanced (DCE) magnetic resonance neurography (MRN) in type 2 diabetes patients with and without SFN.
Methods: A total of 18 patients with type 2 diabetes (T2D, 8 with SFN, 10 without SFN) and 10 healthy controls (HC) took part in this cross-sectional single-center study and underwent QST of the right leg and DCE-MRN of the right thigh with subsequent calculation of the sciatic nerve constant of capillary permeability (K), extravascular extracellular volume fraction (V), and plasma volume fraction (V).
Background: Diabetic sensorimotor polyneuropathy (DSPN) is one of the most prevalent and poorly understood diabetic microvascular complications. Recent studies have found that fractional anisotropy (FA), a marker for microstructural nerve integrity, is a sensitive parameter for the structural and functional nerve damage in DSPN. The aim of this study was to investigate the significance of proximal sciatic nerve's FA on different distal nerve fiber deficits of the upper and lower limbs and its correlation with the neuroaxonal biomarker, neurofilament light chain protein (NfL).
View Article and Find Full Text PDFMitochondrial inner membrane potentials in cardiomyocytes may oscillate in cycles of depolarization/repolarization when the mitochondrial network is exposed to metabolic or oxidative stress. The frequencies of such oscillations are dynamically changing while clusters of weakly coupled mitochondrial oscillators adjust to a common phase and frequency. Across the cardiac myocyte, the averaged signal of the mitochondrial population follows self-similar or fractal dynamics; however, fractal properties of individual mitochondrial oscillators have not yet been examined.
View Article and Find Full Text PDFPurpose: To apply a navigator-based slice-tracking method to prospectively compensate respiratory motion for kidney pseudo-continuous arterial spin labeling (pCASL), using spin-echo (SE) EPI acquisition.
Methods: A single gradient-echo slice selection and projection readout at the location of the diaphragm along the inferior-superior direction was applied as a navigator. Navigator acquisition and fat suppression were inserted before each transverse imaging slice of the readouts of a 2D-SE-EPI-based pCASL sequence.
Clinical studies investigating the benefit of glucose control on the progression of diabetic neuropathy (DN) have come to controversial results in patients with type 2 diabetes (T2D). This study aimed to assess associations of HbA1c levels with parameters of nerve perfusion in patients with T2D with and without DN using dynamic contrast-enhanced magnetic resonance neurography (DCE-MRN) at 3 Tesla. A total of 58 patients with T2D (20 with DN and 38 without DN) took part in this cross-sectional single-center study.
View Article and Find Full Text PDFPurpose: Recent studies suggest an involvement of the peripheral nervous system (PNS) in multiple sclerosis (MS). Here, we characterize the proximal-to-distal distribution pattern of peripheral nerve lesions in relapsing-remitting MS (RRMS) by quantitative magnetic resonance neurography (MRN).
Methods: A total of 35 patients with RRMS were prospectively included and underwent detailed neurologic and electrophysiologic examinations.
Objectives: To prospectively assess the reliability and accuracy of high-resolution, dental MRI (dMRI) for endodontic working length (WL) measurements of premolars and molars under clinical conditions.
Materials And Methods: Three-Tesla dMRI was performed in 9 subjects who also had undergone cone-beam computed tomography (CBCT) (mean age: 47 ± 13.5 years).
Background And Purpose: Diabetic sensorimotor peripheral neuropathy is usually considered to affect predominantly the lower limbs (LL-N), whereas the impact of upper limb neuropathy (UL-N) on hand functional performance and quality of life (QoL) has not been evaluated systematically. This study aims to investigate the prevalence and characteristics of UL-N and its functional and psychosocial consequences in type 2 diabetes.
Methods: Individuals with type 2 diabetes (n = 141) and an age- and sex-matched control group (n = 73) underwent comprehensive assessment of neuropathy, hand functional performance, and psychosocial status.
Magnetic resonance neurography (MRN), the MR imaging of peripheral nerves, is clinically used for assessing and monitoring peripheral neuropathies based on qualitative, weighted MR imaging. Recently, quantitative MRN has been increasingly reported with various MR parameters as potential biomarkers. An evidence synthesis mapping the available methodologies and normative values of quantitative MRN of human peripheral nerves, independent of the anatomical location and type of neuropathy, is currently unavailable and would likely benefit this young field of research.
View Article and Find Full Text PDFObjectives: The aims of this study were to quantify T1/T2-relaxation times of the dental pulp, develop a realistic tooth model, and compare image quality between cone-beam computed tomography (CBCT) and high-resolution magnetic resonance imaging (MRI) of single teeth using a wireless inductively coupled intraoral coil.
Methods: T1/T2-relaxometry was performed at 3 T in 10 healthy volunteers (283 teeth) to determine relaxation times of healthy dental pulp and develop a realistic tooth model using extracted human teeth. Eight MRI sequences (DESS, CISS, TrueFISP, FLASH, SPACE, TSE, MSVAT-SPACE, and UTE) were optimized for clinically applicable high-resolution imaging of the dental pulp.
Objective: The pathogenesis of diabetic polyneuropathy (DN) is poorly understood and given the increasing prevalence of DN, there is a need for clinical or imaging biomarkers that quantify structural and functional nerve damage. While clinical studies have found evidence of an association between elevated levels of troponin T (hsTNT) and N-terminal pro brain natriuretic peptide (proBNP) with microvascular compromise in type 2 diabetes (T2D), their implication in mirroring DN nerve perfusion changes remains unclear. The objective of this study was, therefore, to investigate whether hsTNT and proBNP assays are associated with MRI nerve perfusion in T2D.
View Article and Find Full Text PDFObjectives: Clinical and histological studies have found evidence that nerve ischemia is a major contributor to diabetic neuropathy (DN) in type 2 diabetes (T2D). The aim of this study was to investigate peripheral nerve microvascular permeability using dynamic contrast enhanced (DCE) magnetic resonance neurography (MRN) to analyze potential correlations with clinical, electrophysiological, and demographic data.
Methods: Sixty-five patients (35/30 with/without DN) and 10 controls matched for age and body mass index (BMI) underwent DCE MRN of the distal sciatic nerve with an axial T1-weighted sequence.
Objective: It is controversially discussed in how far smoking contributes to diabetic polyneuropathy (DPN) in type 2 diabetes (T2D). Diffusion-weighted magnetic resonance neurography (MRN) at 3 Tesla has been shown to provide objective values for structural nerve integrity in patients with T2D. The aim of this study was to investigate the contribution of cigarette smoking on structural nerve integrity in T2D.
View Article and Find Full Text PDFBackground: Recent studies have found that troponin T parallels the structural and functional decay of peripheral nerves at the level of the lower limbs in patients with type 2 diabetes (T2D). The aim of this study was to determine whether this finding can also be reproduced at the level of the upper limbs.
Methods: Ten patients with fasting glucose levels >100 mg/dl (five with prediabetes and five with T2D) underwent magnetic resonance neurography of the right upper arm comprising T2-weighted and diffusion weighted sequences.
Aim: This prospective in vivo study aimed to optimize the assessment of pulpal contrast-enhancement (PCE) on dental magnetic resonance imaging (dMRI) and investigate physiological PCE patterns.
Methodology: In 70 study participants, 1585 healthy teeth were examined using 3-Tesla dMRI before and after contrast agent administration. For all teeth, the quotient of post- and pre-contrast pulp signal intensity (Q-PSI) was calculated to quantify PCE.
Background: We characterized and quantified peripheral nerve damage in alcohol-dependent patients (ADP) by magnetic resonance neurography (MRN) in correlation with clinical and electrophysiologic findings.
Methods: Thirty-one adult patients with a history of excessive alcohol consumption and age-/sex-matched healthy controls were prospectively examined. After detailed neurologic and electrophysiologic testing, the patient group was subdivided into ADP with alcohol-related polyneuropathy (ALN) and without ALN (Non-ALN).