The quantification of cellular metabolic activity via MTT assay has become a widespread practice in eukaryotic cell studies and is progressively extending to bacterial cell investigations. This study pioneers the application of MTT assay to evaluate the metabolic activity of biofilm-forming cells within bacterial biofilms on nanofibrous materials. The biofilm formation of Staphylococcus aureus and Escherichia coli on nanomaterials electrospun from polycaprolactone (PCL), polylactic acid (PLA), and polyamide (PA) was examined.
View Article and Find Full Text PDFElectrospinning is a widely employed manufacturing platform for tissue engineering applications because it produces structures that closely mimic the extracellular matrix. Herein, we demonstrate the potential of poly(vinyl alcohol) (PVA) electrospun nanofibers as scaffolds for tissue engineering. Nanofibers were created by needleless direct current electrospinning from PVA with two different degrees of hydrolysis (DH), namely 98% and 99% and subsequently heat treated at 180 °C for up to 16 h to render them insoluble in aqueous environments without the use of toxic cross-linking agents.
View Article and Find Full Text PDFTo develop microbiologically safe nanofibrous materials, it is crucial to understand their interactions with microbial cells. Current research indicates that the morphology of nanofibers, particularly the diameter of the fibers, may play a significant role in biofilm formation and retention. However, it has not yet been determined how the fiber diameter of poly-ε-caprolactone (PCL), one of the most widely used biopolymers, affects these microbial interactions.
View Article and Find Full Text PDFBurn injuries are a significant global health concern, with more than 11 million people requiring medical intervention each year and approximately 180,000 deaths annually. Despite progress in health and social care, burn injuries continue to result in socioeconomic burdens for victims and their families. The management of severe burn injuries involves preventing and treating burn shock and promoting skin repair through a two-step procedure of covering and closing the wound.
View Article and Find Full Text PDFSkin wound healing is a complex physiological process that involves various cell types, growth factors, cytokines, and other bioactive compounds. In this study, a novel dual-function multilayered nanofibrous membrane is developed for chronic wound application. The membrane is composed of five alternating layers of polycaprolactone (PCL) and poly (vinyl alcohol) (PVA) nanofibers (PCL-PVA) with a dual function: the PCL nanofibrous layers allow cell adhesion and growth, and the PVA layers enriched with incorporated platelet lysate (PCL-PVA + PL) serve as a drug delivery system for continuous release of bioactive compounds from PL into an aqueous environment.
View Article and Find Full Text PDFScaffolds made of degradable polymers, such as collagen, polyesters or polysaccharides, are promising matrices for fabrication of bioartificial vascular grafts or patches. In this study, collagen isolated from porcine skin was processed into a gel, reinforced with collagen particles and with incorporated adipose tissue-derived stem cells (ASCs). The cell-material constructs were then incubated in a DMEM medium with 2% of FS (DMEM_part), with added polyvinylalcohol nanofibers (PVA_part sample), and for ASCs differentiation towards smooth muscle cells (SMCs), the medium was supplemented either with human platelet lysate released from PVA nanofibers (PVA_PL_part) or with TGF-β1 + BMP-4 (TGF + BMP_part).
View Article and Find Full Text PDFIntroduction: The formation of diabetic ulcers (DU) is a common complication for diabetic patients resulting in serious chronic wounds. There is therefore, an urgent need for complex treatment of this problem. This study examines a bioactive wound dressing of a biodegradable electrospun nanofibrous blend of poly(L-lactide-co-ε-caprolactone) and poly(ε-caprolactone) (PLCL/PCL) covered by a thin fibrin layer for sustained delivery of bioactive molecules.
View Article and Find Full Text PDFIntroduction: Cardiovascular diseases are responsible for significant morbidity and mortality in the population. Artificial vascular grafts are often essential for surgical procedures in radical or palliative treatment. Many new biodegradable materials are currently under development.
View Article and Find Full Text PDFThe use of Intraoperative Cell Salvage (ICS) is currently limited in oncological surgeries, due to safety concerns associated with the ability of existing devices to successfully remove circulating tumour cells. In this work, we present the first stages towards the creation of an alternative platform to current cell savers, based on the extremely selective immunoaffinity membrane chromatography principle. Non-woven membranes were produced via electrospinning using poly(vinyl alcohol) (PVA), and further heat treated at 180 °C to prevent their dissolution in aqueous environments and preserve their fibrous morphology.
View Article and Find Full Text PDFThe aim of this work is to determine the biological activity of ellagitannins rich extracts from leaves of raspberry ( L.) and wild strawberry ( L.) in relation to cells and cell membranes.
View Article and Find Full Text PDFActive wound dressings are attracting extensive attention in soft tissue repair and regeneration, including bacteria-infected skin wound healing. As the wide use of antibiotics leads to drug resistance we present here a new concept of wound dressings based on the polycaprolactone nanofiber scaffold (NANO) releasing second generation lipophosphonoxin (LPPO) as antibacterial agent. Firstly, we demonstrated in vitro that LPPO released from NANO exerted antibacterial activity while not impairing proliferation/differentiation of fibroblasts and keratinocytes.
View Article and Find Full Text PDFPlatelet lysate (PL) provides a natural source of growth factors and other bioactive molecules, and the local controlled release of these bioactive PL components is capable of improving the healing of chronic wounds. Therefore, we prepared composite nanofibrous meshes via the needleless electrospinning technique using poly(vinyl alcohol) (PVA) with a high molecular weight and with a high degree of hydrolysis with the incorporated PL (10% ). The morphology, wettability and protein release from the nanofibers was then assessed from the resulting composite PVA-PL nanomats.
View Article and Find Full Text PDFChronic wounds affect millions of patients worldwide, and it is estimated that this number will increase steadily in the future due to population ageing. The research of new therapeutic approaches to wound healing includes the development of nanofibrous meshes and the use of platelet lysate (PL) to stimulate skin regeneration. This study considers a combination of a degradable electrospun nanofibrous blend of poly(L-lactide--ε-caprolactone) and poly(ε-caprolactone) (PLCL/PCL) membranes (NF) and fibrin loaded with various concentrations of PL aimed at the development of bioactive skin wound healing dressings.
View Article and Find Full Text PDFAlthough nanomaterials are used in many fields, little is known about the fundamental interactions between nanomaterials and microorganisms. To test antimicrobial properties and retention ability, 13 electrospun polyamide (PA) nanomaterials with different morphology and functionalization with various concentrations of AgNO and chlorhexidine (CHX) were analyzed. CCM 4516 was used to verify the designed nanomaterials' inhibition and permeability assays.
View Article and Find Full Text PDFBiomed Phys Eng Express
February 2020
Polycaprolactone (PCL) was electrospun with the addition of arginine (Arg), an α-amino acid that accelerates the healing process. The efficient needleless electrospinning technique was used for the fabrication of the nanofibrous layers. The materials produced consisted mainly of fibers with diameters of between 200 and 400 nm.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2021
Electrospun polyamide (PA) nanofibers have great potential for medical applications (in dermatology as antimicrobial compound carriers or surgical sutures). However, little is known about microbial colonization on these materials. Suitable methods need to be chosen and optimized for the analysis of biofilms formed on nanofibers and the influence of their morphology on biofilm formation.
View Article and Find Full Text PDFRepairs to deep skin wounds continue to be a difficult issue in clinical practice. A promising approach is to fabricate full-thickness skin substitutes with functions closely similar to those of the natural tissue. For many years, a three-dimensional (3D) collagen hydrogel has been considered to provide a physiological 3D environment for co-cultivation of skin fibroblasts and keratinocytes.
View Article and Find Full Text PDFPolypyrrole is one of the most investigated conductive polymers used for tissue engineering applications because of its advantageous properties and the ability to promote different cell types' adhesion and proliferation. Together with β-cyclodextrin, which is capable of accommodating helpful biomolecules in its cavity, it would make a perfect couple for use as a scaffold for tissue engineering. Such scaffolds were prepared by the polymerisation of 6-(pyrrol-3-yl)hexanoic acid on polycaprolactone microfibres with subsequent attachment of β-cyclodextrin on the polypyrrole layer.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
November 2018
The study describes the detailed examination of the effect of ethylene oxide sterilization on electrospun scaffolds constructed from biodegradable polyesters. Different fibrous layers fabricated from polycaprolactone (PCL) and a copolymer consisting of polylactide and polycaprolactone (PLCL) were investigated for the determination of their mechanical properties, degradation rates and interaction with fibroblasts. It was discovered that the sterilization procedure influenced the mechanical properties of the electrospun PLCL copolymer scaffold to the greatest extent.
View Article and Find Full Text PDFThe study involved the electrospinning of the copolymer poly(L-lactide-co-ε-caprolactone) (PLCL) into tubular grafts. The subsequent material characterization, including micro-computed tomography analysis, revealed a level of porosity of around 70%, with pore sizes of 9.34 ± 0.
View Article and Find Full Text PDFFibrous scaffolds are desired in tissue engineering applications for their ability to mimic extracellular matrix. In this study we compared fibrous scaffolds prepared from polycaprolactone using three different fabrication methods, electrospinning (ES), electro-blowing and melt-blown combined with ES. Scaffolds differed in morphology, fiber diameters and pore sizes.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
January 2018
Biodegradable polyesters, namely polycaprolactone (PCL) and copolymer of polylactide and polycaprolactone (PLCL) were electrospun into various fibrous structures and their hemocompatibility was evaluated in vitro. Firstly, hemolytic effect was evaluated upon incubation with diluted whole blood. The results showed that the degree of hemolysis depended on chemical composition and fibrous morphology.
View Article and Find Full Text PDFThe complete 98,192bp nucleotide sequence was determined for plasmid pA81, which is harbored by the haloaromatic acid-degrading bacterium Achromobacter xylosoxidans A8. The majority of the 103 open reading frames identified on pA81 could be categorized as either "backbone" genes, genes encoding (halo)aromatic compound degradation, or heavy metal resistance determinants. The backbone genes controlled conjugative transfer, replication and plasmid stability, and were well conserved with other IncP1-beta plasmids.
View Article and Find Full Text PDF