Publications by authors named "Jen-Wei Kuo"

This paper presents a fully automatic segmentation system for whole-body high-frequency ultrasound (HFU) images of mouse embryos that can simultaneously segment the body contour and the brain ventricles (BVs). Our system first locates a region of interest (ROI), which covers the interior of the uterus, by sub-surface analysis. Then, it segments the ROI into BVs, the body, the amniotic fluid, and the uterine wall, using nested graph cut.

View Article and Find Full Text PDF

Previous studies by our group have shown that 3-D high-frequency quantitative ultrasound (QUS) methods have the potential to differentiate metastatic lymph nodes (LNs) from cancer-free LNs dissected from human cancer patients. To successfully perform these methods inside the LN parenchyma (LNP), an automatic segmentation method is highly desired to exclude the surrounding thin layer of fat from QUS processing and accurately correct for ultrasound attenuation. In high-frequency ultrasound images of LNs, the intensity distribution of LNP and fat varies spatially because of acoustic attenuation and focusing effects.

View Article and Find Full Text PDF

We propose a fully automatic segmentation method called nested graph cut to segment images (2D or 3D) that contain multiple objects with a nested structure. Compared to other graph-cut-based methods developed for multiple regions, our method can work well for nested objects without requiring manual selection of initial seeds, even if different objects have similar intensity distributions and some object boundaries are missing. Promising results were obtained for separating the brain ventricles, the head, and the uterus region in the mouse-embryo head images obtained using high-frequency ultrasound imaging.

View Article and Find Full Text PDF

Inter-observer variability and image quality are two key factors that can affect the diagnostic performance of elastography and B-mode ultrasound for breast tumor characterization. The purpose of this study is to use an image quantification method that automatically chooses a representative slice and then segments the tumor contour to evaluate the diagnostic features for tumor characterization. First, the representative slice is selected based on either the stiffness inside the tumor (the signal-to-noise ratio on the elastogram [SNRe]) or the contrast between the tumor and the surrounding normal tissue (the contrast-to-noise ratio on the elastogram [CNRe]).

View Article and Find Full Text PDF