Publications by authors named "Jen Sheen"

Plant genetic engineering methods are critical for food security and biofuel production and to enable molecular farming. Here, we elucidated how polymeric high aspect ratio nanocarriers can enable DNA delivery to plants and transient expression. We demonstrated that a nanocarrier with 20 nm width, 80 nm length, and a polymer-to-DNA ratio of N/P = 3.

View Article and Find Full Text PDF

Abscisic acid (ABA) regulates plant stress adaptation, growth and reproduction. Despite extensive ABA-Ca signalling links, imaging ABA-induced increases in Ca concentration has been challenging, except in guard cells. Here we visualize ABA-triggered [Ca] dynamics in diverse organs and cell types of Arabidopsis thaliana using a genetically encoded Ca ratiometric sensor with a low-nanomolar Ca-binding affinity and a large dynamic range.

View Article and Find Full Text PDF

Delivery of proteins in plant cells can facilitate the design of desired functions by modulation of biological processes and plant traits but is currently limited by narrow host range, tissue damage, and poor scalability. Physical barriers in plants, including cell walls and membranes, limit protein delivery to desired plant tissues. Herein, a cationic high aspect ratio polymeric nanocarriers (PNCs) platform is developed to enable efficient protein delivery to plants.

View Article and Find Full Text PDF

Rice production accounts for approximately half of the freshwater resources utilized in agriculture, resulting in greenhouse gas emissions such as methane (CH) from flooded paddy fields. To address this challenge, environmentally friendly and cost-effective water-saving techniques have become widely adopted in rice cultivation. However, the implementation of water-saving treatments (WSTs) in paddy-field rice has been associated with a substantial yield loss of up to 50% as well as a reduction in nitrogen use efficiency (NUE).

View Article and Find Full Text PDF

Identification of protein-protein interactions (PPIs) and protein kinase substrates is fundamental for understanding how proteins exert biological functions with their partners and targets. However, it is still technically challenging, especially for transient and weak interactions involved in most cellular processes. The proximity-tagging systems enable capturing snapshots of both stable and transient PPIs.

View Article and Find Full Text PDF
Article Synopsis
  • Nitrate is a crucial nutrient and signaling molecule that helps regulate plant growth and metabolism.
  • Researchers identified that the NIN-like protein (NLP) transcription factors are essential for plants' response to nitrate, with specific mutation in these proteins disrupting their growth and metabolic processes.
  • The study revealed that NLP7 acts as a nitrate sensor, functioning similarly to a bacterial sensor, and demonstrated the significance of its structure in mediating plant responses to nitrate.
View Article and Find Full Text PDF

Nutrients and energy have emerged as central modulators of developmental programmes in plants and animals. The evolutionarily conserved target of rapamycin (TOR) kinase is a master integrator of nutrient and energy signalling that controls growth. Despite its key regulatory roles in translation, proliferation, metabolism and autophagy, little is known about how TOR shapes developmental transitions and differentiation.

View Article and Find Full Text PDF

One of the hallmarks of plant senescence is the global transcriptional reprogramming coordinated by a plethora of transcription factors (TFs). However, mechanisms underlying the interactions between different TFs in modulating senescence remain obscure. Previously, we discovered that plant ABS3 subfamily MATE transporter genes regulate senescence and senescence-associated transcriptional changes.

View Article and Find Full Text PDF

To survive and sustain growth, sessile plants have developed sophisticated internal signalling networks that respond to various external and internal cues. Despite the central roles of nutrient and hormone signaling in plant growth and development, how hormone-driven processes coordinate with metabolic status remains largely enigmatic. Target of rapamycin (TOR) kinase is an evolutionarily conserved master regulator that integrates energy, nutrients, growth factors, hormones, and stress signals to promote growth in all eukaryotes.

View Article and Find Full Text PDF

Development is coordinated by dozens of signals that act in overlapping pathways to orchestrate multicellular growth. Understanding how signaling pathways intersect and diverge at a molecular level is critical to predicting how organisms will react to dynamic environmental conditions. In plants, two antagonistic signaling hubs are strictly required to sense and respond to many nutrients and hormones: TARGET OF RAPAMYCIN (TOR) and ETHYLENE INSENSITIVE 2 (EIN2).

View Article and Find Full Text PDF

Wild tomatoes (Solanum peruvianum) are important genomic resources for tomato research and breeding. Development of a foreign DNA-free clustered regularly interspaced short palindromic repeat (CRISPR)-Cas delivery system has potential to mitigate public concern about genetically modified organisms. Here, we established a DNA-free CRISPR-Cas9 genome editing system based on an optimized protoplast regeneration protocol of S.

View Article and Find Full Text PDF

The ultimate goal of technology development in genome editing is to enable precisely targeted genomic changes in any cells or organisms. Here we describe protoplast systems for precise and efficient DNA sequence changes with preassembled Cas9 ribonucleoprotein (RNP) complexes in , and . Cas9 RNP-mediated gene disruption with dual gRNAs could reach ∼90% indels in Arabidopsis protoplasts.

View Article and Find Full Text PDF

Versatile genome editing can be facilitated by the insertion of DNA sequences into specific locations. Current protocols involving CRISPR and Cas proteins rely on low efficiency homology-directed repair or non-homologous end joining with modified double-stranded DNA oligonucleotides as donors. Our simple protocol eliminates the need for expensive equipment, chemical and enzymatic donor DNA modification, or plasmid construction by using polyethylene glycol-calcium to deliver non-modified single-stranded DNA oligonucleotides and CRISPR-Cas9 ribonucleoprotein into protoplasts.

View Article and Find Full Text PDF
Article Synopsis
  • - The text discusses the critical role of nutrients like sugars, nitrate, and phosphate in plant signaling networks that regulate gene expression, metabolism, and growth.
  • - It highlights key regulatory proteins including HEXOKINASE1, TARGET OF RAPAMYCIN, and SNF1-RELATED PROTEIN KINASE1 that influence these nutrient signaling pathways.
  • - The review also covers advancements in understanding how these signaling networks interact with environmental factors to control plant development and stress responses.
View Article and Find Full Text PDF

Nitrate, the major source of inorganic nitrogen for plants, is a critical signal controlling nutrient transport and assimilation and adaptive growth responses throughout the plant. Understanding how plants perceive nitrate and how this perception is transduced into responses that optimize growth are important for the rational improvement of crop productivity and for mitigating pollution from the use of fertilizers. This review highlights recent findings that reveal key roles of cytosolic-nuclear calcium signalling and dynamic protein phosphorylation via diverse mechanisms in the primary nitrate response (PNR).

View Article and Find Full Text PDF

The plant hormone abscisic acid (ABA) promotes stomatal closure via multifarious cellular signaling cascades. Our previous comprehensive reconstruction of the stomatal closure network resulted in an 81-node network with 153 edges. Discrete dynamic modeling utilizing this network reproduced over 75% of experimental observations but a few experimentally supported results were not recapitulated.

View Article and Find Full Text PDF

Energy homeostasis is vital to all living organisms. In eukaryotes, this process is controlled by fuel gauging protein kinases: AMP-activated kinase in mammals, Sucrose Non-Fermenting1 (SNF1) in yeast (), and SNF1-related kinase1 (SnRK1) in plants. These kinases are highly conserved in structure and function and (according to this paradigm) operate as heterotrimeric complexes of catalytic-α and regulatory β- and γ-subunits, responding to low cellular nucleotide charge.

View Article and Find Full Text PDF

The multidomain target of rapamycin (TOR) is an atypical serine/threonine protein kinase resembling phosphatidylinositol lipid kinases, but retains high sequence identity and serves a remarkably conserved role as a master signalling integrator in yeasts, plants, and humans. TOR dynamically orchestrates cell metabolism, biogenesis, organ growth, and development transitions in response to nutrient, energy, hormone, and environmental cues. Here we review recent findings on the versatile and complex roles of TOR in transcriptome reprogramming, seedling, root, and shoot growth, and root hair production activated by sugar and energy signalling.

View Article and Find Full Text PDF

Protein homeostasis is essential for cellular functions and longevity, and the loss of proteostasis is one of the hallmarks of senescence. Autophagy is an evolutionarily conserved cellular degradation pathway that is critical for the maintenance of proteostasis. Paradoxically, autophagy deficiency leads to accelerated protein loss by unknown mechanisms.

View Article and Find Full Text PDF

CLV3p-mediated phosphorylation of MPK3 and MPK6 occurs via CLV1 and BAM1 receptors to regulate the maintenance of SAM development. The CLAVATA peptide-receptor (CLV3p-CLV1) pathway modulates a homeodomain master regulator WUSCHEL (WUS) transcription factor in the shoot apical meristem (SAM) with poorly defined signaling mechanisms. Here, we report that mitogen-activated protein kinases (MAPKs, also known as MPKs in plants) act in an intracellular signaling cascade to play an important role in the maintenance of SAM development.

View Article and Find Full Text PDF

Deetiolation is an essential developmental process transforming young plant seedlings into the vegetative phase with photosynthetic activities. Light signals initiate this important developmental process by triggering massive reprogramming of the transcriptome and translatome. Compared with the wealth of knowledge of transcriptional regulation, the molecular mechanism underlying this light-triggered translational enhancement remains unclear.

View Article and Find Full Text PDF

Plant shoot stem cell pool is constantly maintained by a negative feedback loop through peptide-receptor mediated signaling pathway. () encode a 96 amino-acid protein which is processed to 12-amino-acid or arabinosylated 13-amino-acid peptides, acting as a ligand signal to regulate stem cell homeostasis in the shoot apical meristem (SAM). Although arabinosylated 13-amino-acid CLV3 peptide (CLV3p) shows more significant binding affinity to its receptors and biological activities in the SAM, the physiological function of two mature forms of CLV3p remained an unresolved puzzle in the past decade due to the technical difficulties of arabinosylation modification in the peptide synthesis.

View Article and Find Full Text PDF

Target of rapamycin (TOR) is an evolutionarily conserved protein kinase that plays a central role in both plants and animals, despite their distinct developmental programs and survival strategies. Indeed, TOR integrates nutrient, energy, hormone, growth factor and environmental inputs to control proliferation, growth and metabolism in diverse multicellular organisms. Here, we compare the molecular composition, upstream regulators and downstream signaling relays of TOR complexes in plants and animals.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionpcidqr5aj2kap2mjc0au9mmeonl1t8o5): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once