Instrumental advances in infrared micro-spectroscopy have made possible the observation of individual human cells and even subcellular structures. The observed spectra represent a snapshot of the biochemical composition of a cell; this composition varies subtly but reproducibly with cellular effects such as progression through the cell cycle, cell maturation and differentiation, and disease. The aim of this summary is to provide a synopsis of the progress achieved in infrared spectral cytopathology (SCP) - the combination of infrared micro-spectroscopy and multivariate methods of analysis - for the detection of abnormalities in exfoliated human cells of the upper respiratory and digestive tract, namely the oral and nasopharyngeal cavities, and the esophagus.
View Article and Find Full Text PDFDuring the last 15 years, vibrational spectroscopic methods have been developed that can be viewed as molecular pathology methods that depend on sampling the entire genome, proteome and metabolome of cells and tissues, rather than probing for the presence of selected markers. First, this review introduces the background and fundamentals of the spectroscopies underlying the new methodologies, namely infrared and Raman spectroscopy. Then, results are presented in the context of spectral histopathology of tissues for detection of metastases in lymph nodes, squamous cell carcinoma, adenocarcinomas, brain tumors and brain metastases.
View Article and Find Full Text PDF