Publications by authors named "Jen Kun Cheng"

Neuropathic pain poses a significant public health challenge, greatly impacting patients' quality of life. Emerging evidence underscores the involvement of epigenetics in dorsal root ganglion (DRG) neurons relevant to pain modulation. C-terminal binding protein 1 (CtBP1) has emerged as a crucial epigenetic transcriptional coregulator.

View Article and Find Full Text PDF

Hydrogels, recognized for their flexibility and diverse characteristics, are extensively used in medical fields such as wearable sensors and soft robotics. However, many hydrogel sensors derived from biomaterials lack mechanical strength and fatigue resistance, emphasizing the necessity for enhanced formulations. In this work, we utilized acrylamide and polyacrylamide as the primary polymer network, incorporated chemically modified poly(ethylene glycol) (DF-PEG) as a physical crosslinker, and introduced varying amounts of methacrylated lysine (LysMA) to prepare a series of hydrogels.

View Article and Find Full Text PDF

Background: Spinal cord injury (SCI) is a debilitating illness in humans that causes permanent loss of movement or sensation. To treat SCI, exosomes, with their unique benefits, can circumvent limitations through direct stem cell transplantation. Therefore, we utilized Gelfoam encapsulated with exosomes derived from human umbilical cord mesenchymal stem cells (HucMSC-EX) in a rat SCI model.

View Article and Find Full Text PDF

The neurohormone melatonin (MLT) demonstrates promising potential in ameliorating neuropathic pain induced by paclitaxel (PTX) chemotherapy. However, little is known about its protective effect on dorsal root ganglion (DRG) neurons in neuropathic pain resulting from the chemotherapeutic drug PTX. Here, PTX-treated rats revealed that intrathecal administration of MLT dose-dependently elevated hind paw withdrawal thresholds and latency, indicating that MLT significantly reversed PTX-induced neuropathic pain.

View Article and Find Full Text PDF

Background: Paclitaxel (PTX), which is a first-line chemotherapy drug used to treat various types of cancers, exhibits peripheral neuropathy as a common side effect that is difficult to treat. Protein arginine methyltransferase 5 (PRMT 5) is a key regulator of the chemotherapy response, as chemotherapy drugs induce PRMT5 expression. However, little is known about the PRMT5-mediated epigenetic mechanisms involved in PTX-induced neuropathic allodynia.

View Article and Find Full Text PDF

Background: Nonsense-mediated messenger RNA (mRNA) decay increases targeted mRNA degradation and has been implicated in the regulation of gene expression in neurons. The authors hypothesized that nonsense-mediated μ-opioid receptor mRNA decay in the spinal cord is involved in the development of neuropathic allodynia-like behavior in rats.

Methods: Adult Sprague-Dawley rats of both sexes received spinal nerve ligation to induce neuropathic allodynia-like behavior.

View Article and Find Full Text PDF

Background: The microtubule-stabilizing drug paclitaxel (PTX) is an important chemotherapeutic agent for cancer treatment and causes peripheral neuropathy as a common side effect that substantially impacts the functional status and quality of life of patients. The mechanistic role for NIMA-related kinase 2 (NEK2) in the progression of PTX-induced neuropathic pain has not been established.

Methods: Adult male Sprague-Dawley rats intraperitoneally received PTX to induce neuropathic pain.

View Article and Find Full Text PDF

Chronic pain disorders are often associated with negative emotions, including anxiety and depression. The central nucleus of the amygdala (CeA) has emerged as an integrative hub for nociceptive and affective components during central pain development. Prior adverse injuries are precipitating factors thought to transform nociceptors into a primed state for chronic pain.

View Article and Find Full Text PDF

Anesthesia for patients with mucopolysaccharidoses (MPS) is quite challenging due to vital systemic dysfunction following progressive accumulation of lysosomal glycosaminoglycans. Previous studies focused on perioperative difficult airway management under general anesthesia but rarely depicted the concern of choosing the size of the endotracheal tube (ETT) as well as neuraxial anesthesia. This study aimed to analyze the overall anesthetic management and related complications for a thorough anesthetic strategy.

View Article and Find Full Text PDF

Originally characterized as an oncoprotein overexpressed in many forms of cancer that participates in numerous cellular pathways, DEK has since been well described regarding the regulation of epigenetic markers and transcription factors in neurons. However, its role in neuropathic allodynia processes remain elusive and intriguingly complex. Here, we show that DEK, which is induced in spinal dorsal horn neurons after spinal nerve ligation (SNL), is regulated by miR-489-3p.

View Article and Find Full Text PDF

Central and peripheral nerve injuries can lead to permanent paralysis and organ dysfunction. In recent years, many cell and exosome implantation techniques have been developed in an attempt to restore function after nerve injury with promising but generally unsatisfactory clinical results. Clinical outcome may be enhanced by bio-scaffolds specifically fabricated to provide the appropriate three-dimensional (3D) conduit, growth-permissive substrate, and trophic factor support required for cell survival and regeneration.

View Article and Find Full Text PDF

Modulation of hippocampal dentate gyrus (DG) excitability regulates anxiety. In the DG, glutamatergic mossy cells (MCs) receive the excitatory drive from principal granule cells (GCs) and mediate the feedback excitation and inhibition of GCs. However, the circuit mechanism by which MCs regulate anxiety-related information routing through hippocampal circuits remains unclear.

View Article and Find Full Text PDF

Many epigenetic regulators are involved in pain-associated spinal plasticity. Coactivator-associated arginine methyltransferase 1 (CARM1), an epigenetic regulator of histone arginine methylation, is a highly interesting target in neuroplasticity. However, its potential contribution to spinal plasticity-associated neuropathic pain development remains poorly explored.

View Article and Find Full Text PDF

Purpose: Nerve injury-induced pain is difficult to treat. In this study, we developed an alginate scaffold with human umbilical cord mesenchymal stem cell exosomes (EX-SC) to treat nerve injury-induced pain.

Materials And Methods: The scaffold was prepared and characterized for its physical traits and biocompatibility.

View Article and Find Full Text PDF

Mixed lineage leukemia 1 (MLL1)-mediated histone H3 lysine 4 trimethylation (H3K4me3) of a subset of genes has been linked to the transcriptional activation critical for synaptic plasticity, but its potential contribution to neuropathic allodynia development remains poorly explored. Here, we show that MLL1, which is induced in dorsal horn neuron after spinal nerve ligation (SNL), is responsible for mechanical allodynia and increased H3K4me3 at metabotropic glutamate receptor subtype 5 (mGluR5) promoter. Moreover, SNL induced WD (Trp-Asp) repeat domain 5 subunit (WDR5) expression as well as the MLL1-WDR5 interaction accompany with H3K4me3 enrichment and transcription of mGluR5 gene in the dorsal horn in neuropathic allodynia progression.

View Article and Find Full Text PDF

Diverse transcriptional controls in the dorsal horn have been observed in pain hypersensitivity. However, the understanding of the exact causes and mechanisms of neuropathic pain development is still fragmentary. Here, the results demonstrated nerve injury decreased the expression of spinal hairy and enhancer of split 1 (Hes1), a transcriptional repressor, and enhanced metabotropic glutamate receptor subtype 5 (mGluR5) transcription/expression, which was accompanied with behavioral allodynia.

View Article and Find Full Text PDF

To date, histone H2B monoubiquitination (H2Bub), a mark associated with transcriptional elongation and ongoing transcription, has not been linked to the development or maintenance of neuropathic pain states. Here, using male Sprague Dawley rats, we demonstrated spinal nerve ligation (SNL) induced behavioral allodynia and provoked ring finger protein 20 (RNF20)-dependent H2Bub in dorsal horn. Moreover, SNL provoked RNF20-mediated H2Bub phosphorylated RNA polymerase II (RNAPII) in the promoter fragments of , thereby enhancing transcription/expression in the dorsal horn.

View Article and Find Full Text PDF

Nerve injury-induced neuropathic pain is difficult to treat. In this study, we used exosomes derived from human umbilical cord mesenchymal stem cell (UCMSC) as a cell-free therapy for nerve injury-induced pain in rats. Isolated UCMSC exosomes range in size from 30 to 160 nm and contain CD63, HSP60, and CD81 exosome markers.

View Article and Find Full Text PDF

Bone morphogenetic protein-2 (BMP-2) is a multifunctional cytokine, capable of governing several cellular functions, including proliferation, motility, differentiation, and angiogenesis. Circulating endothelial progenitor cells (EPCs) have been shown to facilitate tissue repair, postnatal neovascularization, and tumor associated angiogenesis. Nevertheless, the impact of BMP-2 on angiogenesis of human EPCs has largely remained a mystery.

View Article and Find Full Text PDF

Background: Bromodomain-containing protein 4 binds acetylated promoter histones and promotes transcription; however, the role of bromodomain-containing protein 4 in inflammatory hyperalgesia remains unclear.

Methods: Male Sprague-Dawley rats received hind paw injections of complete Freund's adjuvant to induce hyperalgesia. The dorsal root ganglia were examined to detect changes in bromodomain-containing protein 4 expression and the activation of genes involved in the expression of voltage-gated sodium channel 1.

View Article and Find Full Text PDF

Background And Objectives: Cannabinoid receptors (CB1R/CB2R) are known to play important roles in pain transmission. In this study, we investigated the effects of continuous intrathecal infusion of CB1/2R agonists in the L5/6 spinal nerve ligation pain model.

Methods: Under isoflurane anesthesia, rats received nerve ligation and intrathecal catheter connected to an infusion pump.

View Article and Find Full Text PDF

Background: Growth arrest and DNA-damage-inducible protein 45β reactivates methylation-silenced neural plasticity-associated genes through DNA demethylation. However, growth arrest and DNA-damage-inducible protein 45β-dependent demethylation contributes to neuropathic allodynia-associated spinal plasticity remains unclear.

Methods: Adult male Sprague-Dawley rats (654 out of 659) received a spinal nerve ligation or a sham operation with or without intrathecal application of one of the following: growth arrest and DNA-damage-inducible protein 45β messenger RNA-targeted small interfering RNA, lentiviral vector expressing growth arrest and DNA-damage-inducible protein 45β, Ro 25-6981 (an NR2B-bearing N-methyl-D-aspartate receptor antagonist), or KN-93 (a calmodulin-dependent protein kinase II antagonist) were used for behavioral measurements, Western blotting, immunofluorescence, dot blots, detection of unmodified cytosine enrichment at cytosine-phosphate-guanine site, chromatin immunoprecipitation quantitative polymerase chain reaction analysis, and slice recordings.

View Article and Find Full Text PDF

The K channel pore-forming subunit Kv4.3 is expressed in a subset of nonpeptidergic nociceptors within the dorsal root ganglion (DRG), and knockdown of Kv4.3 selectively induces mechanical hypersensitivity, a major symptom of neuropathic pain.

View Article and Find Full Text PDF

Background: Pulsed radiofrequency (PRF) has been used to treat chronic pain for years, but its effectiveness and mechanism in treating diabetic neuropathic pain are still unexplored. The aim of this study was to elucidate the modulation of diabetic neuropathic pain induced by streptozotocin and the release of spinal excitatory amino acids by PRF.

Methods: Diabetes was induced by intraperitoneal administration of streptozotocin.

View Article and Find Full Text PDF