The emergence of new proteins is a central question in biology. Most tertiary protein folds known to date appear to have an ancient origin, but it is clear from bioinformatic analyses that new proteins continuously emerge in all organismal groups. However, there is a paucity of experimental data on new proteins regarding their structure and biophysical properties.
View Article and Find Full Text PDFThe virus life cycle depends on host-virus protein-protein interactions, which often involve a disordered protein region binding to a folded protein domain. Here, we used proteomic peptide phage display (ProP-PD) to identify peptides from the intrinsically disordered regions of the human proteome that bind to folded protein domains encoded by the SARS-CoV-2 genome. Eleven folded domains of SARS-CoV-2 proteins were found to bind 281 peptides from human proteins, and affinities of 31 interactions involving eight SARS-CoV-2 protein domains were determined (K ∼ 7-300 μM).
View Article and Find Full Text PDFInteractions between two proteins are often mediated by a disordered region in one protein binding to a groove in a folded interaction domain in the other one. While the main determinants of a certain interaction are typically found within a well-defined binding interface involving the groove, recent studies show that nonspecific contacts by flanking regions may increase the affinity. One example is the coupled binding and folding underlying the interaction between the two transcriptional coactivators NCOA3 (ACTR) and CBP, where the flanking regions of an intrinsically disordered region in human NCOA3 increases the affinity for CBP.
View Article and Find Full Text PDFRNA binding motif protein X-linked (RBMX) encodes the heterogeneous nuclear ribonucleoprotein G (hnRNP G) that regulates splicing, sister chromatid cohesion and genome stability. RBMX knock down experiments in various model organisms highlight the gene's importance for brain development. Deletion of the RGG/RG motif in hnRNP G has previously been associated with Shashi syndrome, however involvement of other hnRNP G domains in intellectual disability remain unknown.
View Article and Find Full Text PDFThe interaction between the transcription factor p53 and the ubiquitin ligase MDM2 results in the degradation of p53 and is well-studied in cancer biology and drug development. Available sequence data suggest that both p53 and MDM2-family proteins are present across the animal kingdom. However, the interacting regions are missing in some animal groups, and it is not clear whether MDM2 interacts with, and regulates p53 in all species.
View Article and Find Full Text PDFIncreasing numbers of small proteins with diverse physiological roles are being identified and characterized in both prokaryotic and eukaryotic systems, but the origins and evolution of these proteins remain unclear. Recent genomic sequence analyses in several organisms suggest that new functions encoded by small open reading frames (sORFs) may emerge de novo from noncoding sequences. However, experimental data demonstrating if and how randomly generated sORFs can confer beneficial effects to cells are limited.
View Article and Find Full Text PDFProteins interact with other proteins, with nucleic acids, lipids, carbohydrates and various small molecules in the living cell. These interactions have been quantified and structurally characterized in numerous studies such that we today have a comprehensive picture of protein structure and function. However, proteins are dynamic and even folded proteins are likely more heterogeneous than they appear in most descriptions.
View Article and Find Full Text PDFLow affinity and transient protein-protein interactions, such as short linear motif (SLiM)-based interactions, require dedicated experimental tools for discovery and validation. Here, we evaluated and compared biotinylated peptide pulldown and protein interaction screen on peptide matrix (PRISMA) coupled to mass-spectrometry (MS) using a set of peptides containing interaction motifs. Eight different peptide sequences that engage in interactions with three distinct protein domains (KEAP1 Kelch, MDM2 SWIB, and TSG101 UEV) with a wide range of affinities were tested.
View Article and Find Full Text PDFThe post-synaptic density (PSD) is a phase-separated membraneless compartment of proteins including PSD-95 that undergoes morphological alteration in response to synaptic activity. Here, we investigated the interactome of a three-domain supramodule, PDZ3-SH3-GK (PSG) from PSD-95 using bioinformatics to identify potential binding partners, and biophysical methods to characterize the interaction with peptides from these proteins. PSG and the single PDZ3 domain bound similar peptides, but with different specificity.
View Article and Find Full Text PDFRecognition motifs that mediate protein-protein interactions are usually embedded within longer intrinsically disordered regions. While binding interfaces involving the recognition motif in such interactions are well studied, less is known about the role of disordered regions flanking the motifs. The interaction between the transcriptional co-activators NCOA3 (ACTR) and CBP is mediated by coupled binding and folding of the two domains CID and NCBD.
View Article and Find Full Text PDFEvolution of proteins is constrained by their structure and function. While there is a consensus that the plasticity of intrinsically disordered proteins relaxes the structural constraints on evolution there is a paucity of data on the molecular details of these processes. The Nuclear Coactivator Binding Domain (NCBD) from CREB-binding protein is a protein interaction domain, which contains a hydrophobic core but is not behaving as a typical globular domain, and has been described as 'molten-globule like'.
View Article and Find Full Text PDFSpecific protein-protein interactions are central to all processes that underlie cell physiology. Numerous studies have together identified hundreds of thousands of human protein-protein interactions. However, many interactions remain to be discovered, and low affinity, conditional, and cell type-specific interactions are likely to be disproportionately underrepresented.
View Article and Find Full Text PDFHuman papillomaviruses (HPVs) such as HPV16 and HPV18 can cause cancers of the cervix, anogenital and oropharyngeal sites. Continuous expression of the HPV oncoproteins E6 and E7 are essential for transformation and maintenance of cancer cells. Therefore, therapeutic targeting of E6 or E7 genes can potentially treat HPV-related cancers.
View Article and Find Full Text PDFCorrect protein folding underlies all cellular functions. While there are detailed descriptions and a good understanding of protein folding pathways for single globular domains there is a paucity of quantitative data regarding folding of multidomain proteins. We have here investigated the folding of a three-domain supramodule from the protein PSD-95, consisting of one PDZ domain, one SH3 domain and one guanylate kinase-like (GK) domain.
View Article and Find Full Text PDFIntrinsically disordered regions in proteins often function as binding motifs in protein-protein interactions. The mechanistic aspects and molecular details of such coupled binding and folding reactions, which involve formation of multiple noncovalent bonds, have been broadly studied theoretically, but experimental data are scarce. Here, using a combination of protein semisynthesis to incorporate phosphorylated amino acids, backbone amide-to-ester modifications, side chain substitutions, and binding kinetics, we examined the interaction between the intrinsically disordered motif of amyloid precursor protein (APP) and the phosphotyrosine binding (PTB) domain of Mint2.
View Article and Find Full Text PDFThere are multiple examples of protein-protein interactions involving one intrinsically disordered protein region binding to an ordered protein domain in a coupled binding and folding reaction. Similarly to protein folding studies, much effort has been devoted to understanding the mechanisms of such coupled binding and folding reactions. In this chapter, we describe how kinetics can be used to assess binding mechanisms with focus on fluorescence-monitored stopped-flow experiments.
View Article and Find Full Text PDFAre all protein interactions fully optimized? Do suboptimal interactions compromise specificity? What is the functional impact of frustration? Why does evolution not optimize some contacts? Proteins and their complexes are best described as ensembles of states populating an energy landscape. These ensembles vary in breadth from narrow ensembles clustered around a single average X-ray structure to broader ensembles encompassing a few different functional "taxonomic" states on to near continua of rapidly interconverting conformations, which are called "fuzzy" or even "intrinsically disordered". Here we aim to provide a comprehensive framework for confronting the structural and dynamical continuum of protein assemblies by combining the concepts of energetic frustration and interaction fuzziness.
View Article and Find Full Text PDFQuantitative measurement of intramolecular and intermolecular interactions in protein structure is an elusive task, not easy to address experimentally. The phenomenon denoted 'energetic coupling' describes short- and long-range interactions between two residues in a protein system. A powerful method to identify and quantitatively characterize long-range interactions and allosteric networks in proteins or protein-ligand complexes is called double-mutant cycles analysis.
View Article and Find Full Text PDFIntrinsically disordered protein domains often have multiple binding partners. It is plausible that the strength of pairing with specific partners evolves from an initial low affinity to a higher affinity. However, little is known about the molecular changes in the binding mechanism that would facilitate such a transition.
View Article and Find Full Text PDF