Publications by authors named "Jemkun Chen"

Article Synopsis
  • Researchers developed a CO-responsive drug delivery system using cytosine-containing rhodamine 6G (Cy-R6G) as an anticancer agent and cytosine-functionalized polyethylene glycol (Cy-PEG) as a carrier, aiming to improve its effectiveness in targeting tumor environments.
  • In water, Cy-R6G and Cy-PEG self-assemble into spherical nanogels that encapsulate the drug, exhibiting tunable sizes, structural stability, and sensitivity to CO and pH changes for controlled drug release.
  • The system shows selective toxicity against cancer cells while sparing normal cells, with CO-rich conditions enhancing the uptake of the nanogels by cancer cells and promoting faster apoptosis, highlighting its potential for advanced cancer treatment
View Article and Find Full Text PDF

We demonstrate that cytosine moieties within physically cross-linked supramolecular polymers not only manipulate drug delivery and release, but also confer specific targeting of cancer cells to effectively enhance the safety and efficacy of chemotherapy-and thus hold significant potential as a new perspective for development of drug delivery systems. Herein, we successfully developed physically cross-linked supramolecular polymers (PECH-PEG-Cy) comprised of hydrogen-bonding cytosine pendant groups, hydrophilic poly(ethylene glycol) side chains, and a hydrophobic poly(epichlorohydrin) main chain. The polymers spontaneously self-assemble into a reversibly hydrogen-bonded network structure induced by cytosine and directly form spherical nanogels in aqueous solution.

View Article and Find Full Text PDF

Oil/water separation processes have garnered significant global attention due to the quick growth in industrial development, recurring chemical leakages, and oil spills. Hence, there is a significant demand for the development of inexpensive superwetting materials in an eco-friendly manner to separate oil/water mixtures and emulsions. In this study, a superwetting melamine sponge (SMS) with switchable wettabilities was prepared by modifying melamine sponge (MS) with sodium dodecanoate.

View Article and Find Full Text PDF

Absorption and desorption rates were generally dependent on the concentration gradient from bulk to absorbents. A novel methodology based on a capacitor with an alternating electric field (AEF) is developed to accelerate the absorption and desorption rates with the frequency manipulation. Ferrous polystyrene microspheres (PISMs) are synthesized as absorbents, which could enhance the complex permittivities as well as dielectric properties.

View Article and Find Full Text PDF

A hole array was fabricated via photolithography to wet the bottoms of holes using oxygen plasma. Amide-terminated silane, a water immiscible compound before hydrolysis, was evaporated for deposition on the plasma-treated hole template surface. The silane compound was hydrolyzed along the edges of circular sides of the hole bottom to form a ring of an initiator after halogenation.

View Article and Find Full Text PDF

We present a breakthrough in the synthesis and development of functional gas-responsive materials as highly potent anticancer agents suitable for applications in cancer treatment. Herein, we successfully synthesised a stimuli-responsive multifunctional material (I-R6G) consisting of a carbon dioxide (CO)-sensitive imidazole moiety and spirolactam-containing conjugated rhodamine 6G (R6G) molecule. The resulting I-R6G is highly hydrophobic and non- or weakly fluorescent.

View Article and Find Full Text PDF

The bottom of a hole-array photoresist template deposited with a hydrophobic atom-transfer radical polymerization (ATRP) initiator was wetted by treatment with oxygen plasma. After the removal of the photoresist template, ring patterns of the ATRP initiator were formed at the interface between the hydrophobic and wetting regions. Polyacrylonitrile (PAN) was grafted from the initiator ring array to covert to polyvinyltetrazole (PVT) rings via a cyano-to-tetrazole reaction, which could adsorb Cu(II) at various concentrations.

View Article and Find Full Text PDF

The performance of an electrochemiluminescence (ECL) immunosensor was improved with a particle gradient. SiO-coated magnetic beads were adopted as nanocarriers for gradient manipulation and immobilized with the primary antibody. Cadmium telluride quantum dots were coated with a layer of protein G for conjugation and orientation of the secondary antibody as signal labels.

View Article and Find Full Text PDF

Self-organization facilitates the formation of specific structures as a result of constituent interactions. In this study, the bottom of a 600 nm hole array photoresist template, which was deposited with a hydrophobic atom transfer radical polymerization (ATRP) initiator, was wetted by treatment with oxygen plasma. After the removal of the photoresist template, ring patterns of the ATRP initiator were formed at the interface between the hydrophobic and wetting regions.

View Article and Find Full Text PDF
Article Synopsis
  • The separation of oily wastewater, particularly emulsions, is an important environmental challenge that calls for sustainable solutions.
  • Researchers developed a superwetting biochar from water caltrop shells, which shows exceptional properties for separating oil and water mixtures.
  • The biochar demonstrated impressive separation efficiency, significantly reducing oil levels in water and achieving high purity in the separated oil, indicating its potential for practical applications in wastewater treatment.
View Article and Find Full Text PDF

Poly(methacrylic acid) (PMAA) brushes were tethered on a silicon surface possessing a 500-nm hole array via atom transfer radical polymerization after the modification of the halogen group. Dextran-biotin (DB) was sequentially immobilized on the PMAA chains to obtain a P(MAA-DB) brush surrounding the hole edges on the silicon surface. After loading antibiotics inside the holes, biphenyl-4,4'-diboronic acid (BDA) was used to cross-link the P(MAA-DB) chains through the formation of boronate esters to cap the hole and block the release of the antibiotics.

View Article and Find Full Text PDF

Magnetically stirrable photocatalysts binding the ZnS-decorated Ni foam with the metal complex cocatalyst as a redox mediator and light-absorbing composition were investigated. Loading metal complex can improve light absorption, surface hydrophilicity, interfacial charge migration, and H production activity. The variation of the metal valences of the composite photocatalysts in an operando environment (with sacrificial agent solution) with and without light irradiation was investigated by X-ray absorption near-edge structure (XANES) spectra and Fourier-transformed extended X-ray absorption fine structure (EXAFS) spectra to monitor the charge carrier dynamics of photocatalysis and explain how the macrocyclic Cu complex (CuC) acted as a redox mediator better than the Ni complex.

View Article and Find Full Text PDF

The development of fluorescence molecules for the fast and effective detection of L-tryptophan (L-Trp) has attracted a lot of attention because it is an important amino acid for baby growth, nitrogen equilibrium in adults, improving sleep, and mood regulation. A dimedone-phenylalanine-based chiral sensor (SDPA) was synthesized and exhibited a strong fluorescence quenching by Fe and Cu in a water/DMSO (3/7) solution with a detection limit of 2.29 × 10 M and 6.

View Article and Find Full Text PDF

Applications of cellulose nanofibers currently match the demands of biodegradable and renewable constituent biocomposites. In this study, we studied the process of preparing TEMPO-oxidized cellulose nanofibers (TOCNs). These nano-sized cellulose fibers (ca.

View Article and Find Full Text PDF

Gelatin was immobilized selectively on the amide groups-modified bottom of a trench array of a photoresist template with 2 μm resolution by the ethyl(dimethylaminopropyl) carbodiimide/-hydroxysuccinimide reaction. The gelatin-immobilized line array was brominated to generate a macroinitiator for atom transfer radical polymerization. Poly(methacrylic acid) (PMAA) brushes were grafted from the macroinitiator layer as line arrays of one-dimensional diffraction gratings (DGs) for various grafting polymerization times.

View Article and Find Full Text PDF

This study provides a significant contribution to the development of multiple hydrogen-bonded supramolecular nanocarrier systems by demonstrating that controlling the hydrogen bond strength within supramolecular polymers represents a crucial factor to tailor the drug delivery performance and enhance the effectiveness of cancer therapy. Herein, we successfully developed two kinds of poly(ethylene glycol)-based telechelic polymers Cy-PEG and UrCy-PEG having self-constituted double and quadruple hydrogen-bonding cytosine (Cy) and ureido-cytosine (UrCy) end-capped groups, respectively, which directly assemble into spherical nanogels with a number of interesting physical characteristics in aqueous solutions. The UrCy-PEG nanogels containing quadruple hydrogen-bonded UrCy dimers exhibited excellent long-term structural stability in a serum-containing biological medium, whereas the double hydrogen-bonded Cy moieties could not maintain the structural integrity of the Cy-PEG nanogels.

View Article and Find Full Text PDF

A new efficient Schiff base sensor SB3 for fluorescent and colorimetric "naked-eye" "turn-on" sensing of cyanide anion (CN) with excellent sensitivity and selectivity was developed. The 4,4'-(perfluoropropane-2,2-diyl)bisphenol group and two phenyl groups were covalently linked by two C = N bonds to extend the conjugation length. The four hydroxyl groups can improve the water solubility of the SB3 sensor.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how gradient properties can enhance the performance of electrochemiluminescence (ECL) immunosensors through a technique called particle gradient assembly patterning (PGAP) using magnetic fields.
  • Magnetic FeO nanoparticles were utilized as carriers, while CdTe quantum dots served as signal labels, demonstrating that PGAP can significantly improve sensitivity.
  • Specifically, the research shows a performance enhancement of about 2.4 times in the gradient immunosensor compared to a regular one, with effective detection of human serum albumin in a wide range, indicating PGAP’s potential for better ECL measurements.
View Article and Find Full Text PDF

To afford an intact double network (sample abbr.: DN) hydrogel, two-step crosslinking reactions of poly(2-acrylamido-2-methylpropanesulfonic acid) (i.e.

View Article and Find Full Text PDF

Water-soluble conjugated polymers (WCPs) composed of a hydrophobic polythiophene main chain with hydrophilic tertiary amine side-chains can directly self-assemble into sphere-like nano-objects in an aqueous solution due to phase separation between the hydrophilic and hydrophobic segments of the polymeric structure. Due to the presence of gas-responsive tertiary amine moieties in the spherical structure, the resulting polymers rapidly and reversibly tune their structural features, surface charge, and fluorescence performance in response to alternating carbon dioxide (CO) and nitrogen (N) bubbling, which leads to significantly enhanced fluorescence and surface charge switching properties and a stable cycle of on and off switching response. studies confirmed that the CO-treated polymers exhibited extremely low cytotoxicity and enhanced cellular uptake ability in normal and tumor cells, and thus possess significantly improved fluorescence stability, distribution, and endocytic uptake efficiency within cellular organisms compared to the pristine polymer.

View Article and Find Full Text PDF

The detection of metal ions and amino acids by the aniline oligomer-based receptor has not been reported yet, to the best of our knowledge. In this study, an efficient multifunctional cation-amino acid sensor (CAS) with aniline moiety and chiral thiourea binding site was synthesized by the reaction of aniline trimer and (S)-(+)-1-phenyl ethyl isothiocyanate. CAS can sense Fe, Cu, Ag ions, and L-tryptophan.

View Article and Find Full Text PDF

Polystyrene nanospheres (PNs) were embedded in bovine skin gelatin gels with a poly(-isopropylacrylamide) (PNIPAAm) network, which were denoted as NGHHs, to generate thermoresponsive behavior. When 265 nm PNs were exploited to generate the pores, bovine skin gelatin extended to completely occupy the pores left by PNs below the lower critical solution temperature (LCST), forming a pore-less structure. Contrarily, above the LCST, the collapse of hydrogen bonding between bovine skin gelatin and PNIPAAm occurred, resulting in pores in the NGHH.

View Article and Find Full Text PDF

In the course of time, significant amounts of heavy-ion pollutants have been dispersed into the environment. Rapid on-site detection of heavy metal ions is crucial to monitor their dispersion in the nascent stages. In this study, 2.

View Article and Find Full Text PDF