Photoacoustic imaging (PAI) is an emerging biomedical imaging technology, which can potentially be used in the clinic to preoperatively measure melanoma thickness and guide biopsy depth and sample location. We recruited 27 patients with pigmented cutaneous lesions suspicious for melanoma to test the feasibility of a handheld linear-array photoacoustic probe in imaging lesion architecture and measuring tumor depth. The probe was assessed in terms of measurement accuracy, image quality, and ease of application.
View Article and Find Full Text PDFBackground: A germline, variant in the BRCA1 3'UTR (rs8176318) was previously shown to predict breast and ovarian cancer risk in women from high-risk families, as well as increased risk of triple negative breast cancer. Here, we tested the hypothesis that this variant predicts tumor biology, like other 3'UTR mutations in cancer.
Methods: The impact of the BRCA1-3'UTR-variant on BRCA1 gene expression, and altered response to external stimuli was tested in vitro using a luciferase reporter assay.
Purpose: A germline microRNA binding site-disrupting variant, the KRAS-variant (rs61764370), is associated with an increased risk of developing several cancers. Because this variant is most strongly associated with ovarian cancer risk in patients from hereditary breast and ovarian families (HBOC), and with the risk of premenopausal triple negative breast cancer, we evaluated the association of the KRAS-variant with women with personal histories of both breast and ovarian cancer, referred to as double primary patients.
Experimental Design: Germline DNA from double primary patients was tested for the KRAS-variant (n = 232).