We have previously demonstrated that long-term exposure of bovine tracheal smooth muscle (BTSM) strips to insulin induces a functional hypercontractile phenotype. To elucidate molecular mechanisms by which insulin might induce maturation of contractile phenotype airway smooth muscle (ASM) cells, we investigated effects of insulin stimulation in serum-free primary BTSM cell cultures on protein accumulation of specific contractile phenotypic markers and on the abundance and stability of mRNA encoding these markers. In addition, we used microscopy to assess insulin effects on ASM cell morphology, phenotype, and induction of phosphatidylinositol (PI) 3-kinase signaling.
View Article and Find Full Text PDFIn airway smooth muscle (ASM), full and partial muscarinic receptor agonists have been described to have large differences in their ability to induce signal transduction, including Ca2+-mobilization. Despite these differences, partial agonists are capable of inducing a submaximal to maximal ASM contraction. To further elucidate transductional differences between full and partial muscarinic receptor agonists, we investigated the contribution of Rho-kinase (an important regulator of Ca2+-sensitization) to methacholine-, pilocarpine- and McN-A-343-induced bovine tracheal smooth muscle (BTSM) contraction, using the selective Rho-kinase inhibitor Y-27632.
View Article and Find Full Text PDF