Publications by authors named "Jelmer Sjollema"

Bacteria can be dead, alive, or exhibit slowed or suspended life forms, making bacterial death difficult to establish. Here, agar-plating, microscopic-counting, SYTO9/propidium-iodide staining, MTT-conversion, and bioluminescence-imaging were used to determine bacterial death upon exposure to different conditions. Rank correlations between pairs of assay outcomes were low, indicating different assays measure different aspects of bacterial death.

View Article and Find Full Text PDF

platforms capable of mimicking the hydrodynamic conditions prevailing in natural aquatic environments have been previously validated and used to predict the fouling behavior on different surfaces. Computational Fluid Dynamics (CFD) has been used to predict the shear forces occurring in these platforms. In general, these predictions are made for the initial stages of biofilm formation, where the amount of biofilm does not affect the flow behavior, enabling the estimation of the shear forces that initial adhering organisms have to withstand.

View Article and Find Full Text PDF

The ability of bacteria to adhere to and form biofilms on food contact surfaces poses serious challenges, as these may lead to the cross-contamination of food products. Biomimetic topographic surface modifications have been explored to enhance the antifouling performance of materials. In this study, the topography of two plant leaves, var.

View Article and Find Full Text PDF
Article Synopsis
  • * Chitosan (CS), a natural polymer known for its non-toxicity and antimicrobial properties, is used to create poly(lactic acid) (PLA)-CS surfaces for marine paints, utilizing waste from the fishery industry as a source of CS.
  • * The study shows that PLA-CS surfaces effectively reduce bacterial cell counts by up to 68% and biofilm thickness by 36%, with the effectiveness varying based on the molecular weight of CS, supporting its potential use in reducing marine biofouling and
View Article and Find Full Text PDF

The development of environmentally friendly antifouling strategies for marine applications is of paramount importance, and the fabrication of innovative nanocomposite coatings is a promising approach. Moreover, since Optical Coherence Tomography (OCT) is a powerful imaging technique in biofilm science, the improvement of its analytical power is required to better evaluate the biofilm structure under different scenarios. In this study, the effect of carbon nanotube (CNT)-modified surfaces in cyanobacterial biofilm development was assessed over a long-term assay under controlled hydrodynamic conditions.

View Article and Find Full Text PDF

Advancements in contemporary medicine have led to an increasing life expectancy which has broadened the application of biomaterial implants. As each implant procedure has an innate risk of infection, the number of biomaterial-associated infections keeps rising. causes 34% of such infections and is known as a potent biofilm producer.

View Article and Find Full Text PDF

Biomaterial-associated infections (BAIs) are an increasing problem where antibiotic therapies are often ineffective. The design of novel strategies to prevent or combat infection requires a better understanding of how an implanted foreign body prevents the immune system from eradicating surface-colonizing pathogens. The objective of this review is to chart factors resulting in sub-optimal clearance of bacteria involved in BAIs.

View Article and Find Full Text PDF

A major contributor to biomaterial associated infection (BAI) is Staphylococcus aureus. This pathogen produces a protective biofilm, making eradication difficult. Biofilms are composed of bacteria encapsulated in a matrix of extracellular polymeric substances (EPS) comprising polysaccharides, proteins and extracellular DNA (eDNA).

View Article and Find Full Text PDF

Since biofilm formation by microfoulers significantly contributes to the fouling process, it is important to evaluate the performance of marine surfaces to prevent biofilm formation, as well as understand their interactions with microfoulers and how these affect biofilm development and structure. In this study, the long-term performance of five surface materials-glass, perspex, polystyrene, epoxy-coated glass, and a silicone hydrogel coating-in inhibiting biofilm formation by cyanobacteria was evaluated. For this purpose, cyanobacterial biofilms were developed under controlled hydrodynamic conditions typically found in marine environments, and the biofilm cell number, wet weight, chlorophyll content, and biofilm thickness and structure were assessed after 49 days.

View Article and Find Full Text PDF

The implementation of nanotechnology to develop efficient antimicrobial systems has a significant impact on the prospects of the biomedical field. Nanogels are soft polymeric particles with an internally cross-linked structure, which behave as hydrogels and can be reversibly hydrated/dehydrated (swollen/shrunken) by the dispersing solvent and external stimuli. Their excellent properties, such as biocompatibility, colloidal stability, high water content, desirable mechanical properties, tunable chemical functionalities, and interior gel-like network for the incorporation of biomolecules, make them fascinating in the field of biological/biomedical applications.

View Article and Find Full Text PDF

Staphylococcus aureus is commonly associated with biofilm-related infections and contributes to the large financial loss that accompany nosocomial infections. The micrococcal nuclease Nuc1 enzyme limits biofilm formation via cleavage of eDNA, a structural component of the biofilm matrix. Solid surface hydrophobicity influences bacterial adhesion forces and may as well influence eDNA production.

View Article and Find Full Text PDF

Marine biofouling has severe economic impacts and cyanobacteria play a significant role as early surface colonizers. Despite this fact, cyanobacterial biofilm formation studies in controlled hydrodynamic conditions are scarce. In this work, computational fluid dynamics was used to determine the shear rate field on coupons that were placed inside the wells of agitated 12-well microtiter plates.

View Article and Find Full Text PDF

Optical-coherence-tomography (OCT) is a non-destructive tool for biofilm imaging, not requiring staining, and used to measure biofilm thickness and putative comparison of biofilm structure based on signal intensity distributions in OCT-images. Quantitative comparison of biofilm signal intensities in OCT-images, is difficult due to the auto-scaling applied in OCT-instruments to ensure optimal quality of individual images. Here, we developed a method to eliminate the influence of auto-scaling in order to allow quantitative comparison of biofilm densities in different images.

View Article and Find Full Text PDF

In Europe, the mean incidence of urinary tract infections in intensive care units is 1.1 per 1000 patient-days. Of these cases, catheter-associated urinary tract infections (CAUTI) account for 98%.

View Article and Find Full Text PDF

Unlike superficial fungal infections of the skin and nails, which are the most common fungal diseases in humans, invasive fungal infections carry high morbidity and mortality, particularly those associated with biofilm formation on indwelling medical devices. Therapeutic management of these complex diseases is often complicated by the rise in resistance to the commonly used antifungal agents. Therefore, the availability of accurate susceptibility testing methods for determining antifungal resistance, as well as discovery of novel antifungal and antibiofilm agents, are key priorities in medical mycology research.

View Article and Find Full Text PDF

In infections, bacteria often adhere to surfaces and become deformed by the forces with which they adhere. Nanoscopic cell wall deformation defines bacterial responses to environmental conditions and is likely influenced by antibiotics. Here, staphylococcal cell wall deformation upon exposure to cell wall active and non-active antibiotics or their combinations is compared for two green-fluorescent (GFP) isogenic Staphylococcus aureus strains adhering to a gold surface, of which one lacks peptidoglycan cross-linking.

View Article and Find Full Text PDF

The transmission of bacteria in biofilms from donor to receiver surfaces precedes the formation of biofilms in many applications. Biofilm transmission is different from bacterial adhesion, because it involves biofilm compression in between two surfaces, followed by a separation force leading to the detachment of the biofilm from the donor surface and subsequent adhesion to the receiver surface. Therewith, the transmission depends on a balance between donor and receiver surface properties and the cohesiveness of the biofilm itself.

View Article and Find Full Text PDF

Models for bacterial adhesion to substratum surfaces all include uncertainty with respect to the (ir)reversibility of adhesion. In a model, based on vibrations exhibited by adhering bacteria parallel to a surface, adhesion was described as a result of reversible binding of multiple bacterial tethers that detach from and successively reattach to a surface, eventually making bacterial adhesion irreversible. Here, we use total internal reflection microscopy to determine whether adhering bacteria also exhibit variations over time in their perpendicular distance above surfaces.

View Article and Find Full Text PDF

Unlabelled: Bacterial adhesion and subsequent biofilm formation on biomedical implants and devices are a major cause of their failure. As systemic antibiotic treatment is often ineffective, there is an urgent need for antimicrobial biomaterials and coatings. The term "antimicrobial" can encompass different mechanisms of action (here termed "antimicrobial surface designs"), such as antimicrobial-releasing, contact-killing or non-adhesivity.

View Article and Find Full Text PDF

Bacterial adhesion is a main problem in many biomedical, domestic, natural and industrial environments and forms the onset of the formation of a biofilm, in which adhering bacteria grow into a multi-layered film while embedding themselves in a matrix of extracellular polymeric substances. It is usually assumed that bacterial adhesion occurs from air or by convective-diffusion from a liquid suspension, but often bacteria adhere by transmission from a bacterially contaminated donor to a receiver surface. Therewith bacterial transmission is mechanistically different from adhesion, as it involves bacterial detachment from a donor surface followed by adhesion to a receiver one.

View Article and Find Full Text PDF

Biofilms can cause severe problems to human health due to the high tolerance to antimicrobials; consequently, biofilm science and technology constitutes an important research field. Growing a relevant biofilm in the laboratory provides insights into the basic understanding of the biofilm life cycle including responses to antibiotic therapies. Therefore, the selection of an appropriate biofilm reactor is a critical decision, necessary to obtain reproducible and reliable in vitro results.

View Article and Find Full Text PDF

Transmission is a main route for bacterial contamination, involving bacterial detachment from a donor and adhesion to receiver surfaces. This work aimed to compare transmission of an extracellular polymeric substance (EPS) producing and a non-EPS producing Staphylococcus epidermidis strain from biofilms on stainless steel. After transmission, donor surfaces remained fully covered with biofilm, indicating transmission through cohesive failure in the biofilm.

View Article and Find Full Text PDF

In real-life situations, bacteria are often transmitted from biofilms growing on donor surfaces to receiver ones. Bacterial transmission is more complex than adhesion, involving bacterial detachment from donor and subsequent adhesion to receiver surfaces. Here, we describe a new device to study shear-induced bacterial transmission from a (stainless steel) pipe to a (silicone rubber) tube and compare transmission of EPS-producing and non-EPS-producing staphylococci.

View Article and Find Full Text PDF

Bacterial adhesion to surfaces occurs ubiquitously and is initially reversible, though becoming more irreversible within minutes after first contact with a surface. We here demonstrate for eight bacterial strains comprising four species, that bacteria adhere irreversibly to surfaces through multiple, reversibly-binding tethers that detach and successively re-attach, but not collectively detach to cause detachment of an entire bacterium. Arguments build on combining analyses of confined Brownian-motion of bacteria adhering to glass and their AFM force-distance curves and include the following observations: (1) force-distance curves showed detachment events indicative of multiple binding tethers, (2) vibration amplitudes of adhering bacteria parallel to a surface decreased with increasing adhesion-forces acting perpendicular to the surface, (3) nanoscopic displacements of bacteria with relatively long autocorrelation times up to several seconds, in absence of microscopic displacement, (4) increases in Mean-Squared-Displacement over prolonged time periods according to t with 0 < α ≪ 1, indicative of confined displacement.

View Article and Find Full Text PDF

Various potential anti-infection strategies can be thought of for biomaterial implants and devices. Permanent, tissue-integrated implants such as artificial joint prostheses require a different anti-infection strategy than, for instance, removable urinary catheters. The different requirements set to biomaterials implants and devices in different clinical applications call for tailor-made strategies.

View Article and Find Full Text PDF