Publications by authors named "Jelle Storteboom"

Quantifying cellular characteristics from a large heterogeneous population is essential to identify rare, disease-driving cells. A recent development in the combination of high-throughput screening microscopy with single-cell profiling provides an unprecedented opportunity to decipher disease-driving phenotypes. Accurately and instantly processing large amounts of image data, however, remains a technical challenge when an analysis output is required minutes after data acquisition.

View Article and Find Full Text PDF

Intratumor heterogeneity is a major obstacle to effective cancer treatment. Current methods to study intratumor heterogeneity using single-cell RNA sequencing (scRNA-seq) lack information on the spatial organization of cells. While state-of-the art spatial transcriptomics methods capture the spatial distribution, they either lack single cell resolution or have relatively low transcript counts.

View Article and Find Full Text PDF

In this paper we investigate at room temperature the excited state lifetime of single NV(-)/NV0 in nanodiamonds at a variety of excitation wavelengths from 510 to 570 nm. The average lifetimes of 25 nanodiamonds with similar sizes exhibit constant values over the entire investigated spectral window. We conclude that the variation observed can be attributed to the specific nanodiamonds.

View Article and Find Full Text PDF

In this paper, we report on the precise determination of the orientation of NV centers by imaging with a radially polarized beam. Vectorial Debye theory is applied to the field in the focus of radially polarized beams to generate emission profiles of two orthogonal optical dipoles. By comparing features of the measured emission intensity patterns with simulated results, complete orientation determination of the NV axis is achieved.

View Article and Find Full Text PDF

In this paper, we report on a singly resonant optical parametric oscillator (OPO) pumped by an amplified spontaneous emission (ASE) source. The pump focusing conditions allow non-collinear phasematching, which resulted in a 230 nm (190 cm(-1)) spectral bandwidth. Calculations indicate that such phasematching schemes may be used to further broaden OPO spectral bandwidths.

View Article and Find Full Text PDF