Background: Improvements in oxygenation and lung mechanics with prone position (PP) in patients with acute respiratory distress syndrome (ARDS) are inconstant. The objectives of the study were (i) to identify baseline variables, including the recruitment-to-inflation ratio (R/I), associated with a positive response to PP in terms of oxygenation (improvement of the ratio of arterial oxygen partial pressure over the inspired oxygen fraction (PaO/FiO) ≥ 20 mmHg) and lung mechanics; (ii) to evaluate whether the response to the previous PP session is associated with the response to the next session.
Methods: In this prospective, observational, single-center study in patients who underwent PP for ARDS due to COVID-19, respiratory variables were assessed just before PP and at the end of the session.
During acute respiratory distress syndrome (ARDS), the increase in pulmonary vascular permeability and lung water induced by pulmonary inflammation may be related to altered lung compliance. A better understanding of the interactions between respiratory mechanics variables and lung water or capillary permeability would allow a more personalized monitoring and adaptation of therapies for patients with ARDS. Therefore, our main objective was to investigate the relationship between extravascular lung water (EVLW) and/or pulmonary vascular permeability index (PVPI) and respiratory mechanic variables in patients with COVID-19-induced ARDS.
View Article and Find Full Text PDFA combination of crash cushion and end-terminal, hybrid energy absorbing devices have been in use worldwide for a few years already. They include SafeEnd, a system Poland has recently introduced. Some road authorities have raised concerns as regards the operating conditions of the devices and how they work together with safety barriers.
View Article and Find Full Text PDFThis manuscript reviews work from our laboratory that addresses the orientation, secondary structure, wet-spinning, and molecular basis for supercontraction of spider silk. It identifies the poly(alanine) runs as the crystalline regions, establishes the degree of orientation of these regions, and identifies the secondary structural elements of the conserved L-G-X-Q (X = G, S, or N) regions. It also describes methods for spinning very small amounts of protein polymers and it sets forth several molecular-level hypotheses concerning supercontraction.
View Article and Find Full Text PDFRotational-Echo Double-Resonance (REDOR) NMR on strategically 13C and 15N labeled samples is used to study the conformation of the LGXQ (X = S, G, or N) motif in the major ampullate gland dragline silk from the spider Nephila clavipes. A method is described for calculating REDOR dephasing curves suitable for background subtractions, using probability distributions of nitrogen atoms surrounding a given carbon site, which are developed from coordinates in the Brookhaven Protein Data Bank. The validity of the method is established by comparison to dephasings observed from natural abundance 13C peaks for G and A.
View Article and Find Full Text PDFThe major ampullate glands of the spider Nephila clavipes contain approximately 0.2 microliter each of a highly concentrated (approximately 50%) solution of silk fibroin. Therefore, the reservoir of silk in these glands presents an ideal opportunity to observe prefolded conformations of a protein in its native state.
View Article and Find Full Text PDFThe objective of this study was to determine if repeated impact could damage living cartilage and lead to osteoarthritis-like changes in its biology. Canine cartilage explants were subjected to impacts of as much as 50 MPa once every 5 seconds for 30 minutes. On each impact cycle, the loading rate was 100 MPa/sec to the assigned peak stress, which was held for 1 second.
View Article and Find Full Text PDFThe electric field gradient (EFG) and chemical-shift (CS) tensors for the amide, carboxylic acid, and amino deuteron sites in glycylglycine monohydrochloride monohydrate were measured. For each site, the EFG tensors are found to lie nearly along the deuteron bond. The magnitudes of the quadrupole-coupling constants agree well with previous empirical relationships to hydrogen-bond lengths.
View Article and Find Full Text PDFThe molecular origin of the exceptional mechanical properties of spider silk is unclear. This paper presents solid-state 2H nuclear magnetic resonance data from unoriented, oriented, and supercontracted fibers, indicating that the crystalline fraction of dragline silk consists of two types of alanine-rich regions, one that is highly oriented and one that is poorly oriented and less densely packed. A new model for the molecular-level structure of individual silk molecules and their arrangement in the fibers is proposed.
View Article and Find Full Text PDFSolid-state 31P-NMR of Nephila clavipes dragline silk indicates the presence of phosphorus in at least two chemically distinct environments. Amino acid analyses of acid-hydrolyzed silk confirm the presence of phosphotyrosine as one of the phosphorus-containing components. The unusual chemical shift (18.
View Article and Find Full Text PDFThis article demonstrates that both the bulk water self-diffusion coefficient (D) and the spatially resolved variation in D for lesion canine cartilage due to osteoarthritis is increased by about 25% over that of surrounding cartilage. This increase in D can be mimicked by enzymatic degradation of cartilage with trypsin, hyaluronidase, and collagenase, or by mechanical means. However, it is established here using excised disks of living cartilage whose proteoglycan and collagen contents were manipulated by biochemical intervention in tissue culture that the diffusion measurement is not sensitive to the proteoglycan content of cartilage.
View Article and Find Full Text PDFSpatially resolved maps of proton self-diffusion coefficients (D) and relaxation times (T1 and T2) were obtained on cartilage-bone plug samples and on excised disks of canine cartilage at a transverse resolution of 30 microns, using microscopic magnetic resonance imaging (micro-MRI). Results are compared for excised disks of cartilage and intact cartilage-bone plugs. Correlations between the absolute water concentration, the self-diffusion coefficient and the T1 relaxation are reported.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 1993
We report a magnetic resonance imaging technique that directly measures motion of cochlear fluids. It uses oscillating magnetic field gradients phase-locked to an external stimulus to selectively visualize and quantify oscillatory fluid motion. It is not invasive, and it does not require optical line-of-sight access to the inner ear.
View Article and Find Full Text PDFIndustrial ecology is a new approach to the industrial design of products and processes and the implementation of sustainable manufacturing strategies. It is a concept in which an industrial system is viewed not in isolation from its surrounding systems but in concert with them. Industrial ecology seeks to optimize the total materials cycle from virgin material to finished material, to component, to product, to waste product, and to ultimate disposal.
View Article and Find Full Text PDFNMR microscopy was used to obtain transverse flow profiles of arterial blood flow in the rat carotid artery at 33 microns resolution. The images were gated to the EKG and correspond to identified regions of diastole. The profiles show that flow is laminar during this part of the heart cycle.
View Article and Find Full Text PDFNMR data that underscore the importance of the membrane in ligand-receptor interactions were obtained and analyzed. The following hypothesis for acetylcholine (ACh) binding to the acetylcholine receptor (AChR) is proposed: ACh first binds to the membrane, where it adopts its bioactive conformation, and it then rapidly diffuses along the membrane to bind to the AChR in its already-correct conformation. Data used to support this hypothesis include (a) the NMR-determined binding constant of KM = (2.
View Article and Find Full Text PDFThe non-invasive measurement of vascular dynamics and elasticity is critical in understanding haemodynamic conditions of cardiovascular diseases such as hypertension and atherosclerosis. Although there are numerous invasive and in vitro techniques for such measurements, until now non-invasive methods have been limited. We have now obtained stroboscopic NMR images of the carotid arteries of 80-g rats.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 1988
We report here the biologically active conformation of acetylcholine when bound to the high-affinity state of the receptor from Torpedo californica. The acetylcholine conformation was determined in the free and bound states by proton NMR two-dimensional nuclear Overhauser effects. In agreement with x-ray crystallographic data, acetylcholine in solution has an extended conformation with an average distance between the acetyl methyl and choline methyl protons of approximately equal to 5 A.
View Article and Find Full Text PDFA method is presented that uses selective proton Nuclear Magnetic Resonance (NMR) relaxation measurements of nicotine in the presence of the acetylcholine receptor to obtain relative binding constants for acetylcholine, carbamylcholine, and muscarine. For receptors from Torpedo californica the results show that (a) the binding constants are in the order acetylcholine greater than nicotine greater than carbamylcholine greater than muscarine; (b) selective NMR measurements provide a rapid and direct method for monitoring both the specific and nonspecific binding of agonists to these receptors and to the lipid; (c) alpha-bungarotoxin can be used to distinguish between specific and nonspecific binding to the receptor; (d) the receptor--substrate interaction causes a large change in the selective relaxation time of the agonists even at concentrations 100x greater than that of the receptor. This last observation means that these measurements provide a rapid method to monitor drug binding when only small amounts of receptor are available.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 1985
Otherwise unavailable information concerning the distribution of phosphorylated compounds in biological systems is obtained by a combined solid-state/solution-state NMR approach, illustrated here for oocytes from Rana pipiens. General methodology is developed, and further extensions are proposed. The following conclusions pertain to the specific system under examination.
View Article and Find Full Text PDF13C- and 2H-labelled amino acids have been incorporated into elastin and collagen and rotational correlation times of the labelled sites have been derived from an analysis of nuclear magnetic resonance relaxation parameters and line-shapes. The elastin experiments were designed to discriminate between the various models that have been proposed to account for the rubber-like elasticity of elastin. The correlation times of carbonyl carbons of the elastin backbone show that elastin chains are very flexible at the molecular level.
View Article and Find Full Text PDF