Matrix extracellular phosphoglycoprotein (MEPE) is an extracellular matrix protein found in dental and skeletal tissues. Although information regarding the role of MEPE in bone and disorders of phosphate metabolism is emerging, the role of MEPE in dental tissues remains unclear. We performed RNA in situ hybridization and immunohistochemistry analyses to delineate the expression pattern of MEPE during embryonic and postnatal development in craniofacial mineralizing tissues.
View Article and Find Full Text PDFCurrently, little is known regarding critical signaling pathways during later stages of tooth development, especially those associated with root formation. Nfi-c null mice, lacking molar roots, have implicated the transcription factor NFI-C as having an essential role in root development. Previously, we identified three NFI-C isoforms expressed in dental tissues with NFI-C2 being the major transcript.
View Article and Find Full Text PDFAlthough Bmp2 is essential for tooth formation, the role of Bmp2 during enamel formation remains unknown in vivo. In this study, the role of Bmp2 in regulation of enamel formation was investigated by the Bmp2 conditional knock out (Bmp2 cKO) mice. Teeth of Bmp2 cKO mice displayed severe and profound phenotypes with asymmetric and misshaped incisors as well as abrasion of incisors and molars.
View Article and Find Full Text PDFBackground: Although enamel matrix derivative (EMD) has demonstrated the ability to promote angiogenesis and osteogenesis both in vitro and in vivo, the specific elements within the EMD compound responsible for these effects remain unknown.
Methods: Nine different protein pools from a commercially produced EMD were collected based on molecular weight. Six of these pools, along with the complete EMD unfractionated compound and positive and negative controls, were tested for their ability to induce bone formation in a calvarial induction assay.
We generated a new Bmp2 conditional-knockout allele without a neo cassette that removes the Bmp2 gene from osteoblasts (Bmp2-cKO(ob)) using the 3.6Col1a1-Cre transgenic model. Bones of Bmp2-cKO(ob) mice are thinner, with increased brittleness.
View Article and Find Full Text PDFFormation of the periodontium begins following onset of tooth-root formation in a coordinated manner after birth. Dental follicle progenitor cells are thought to form the cementum, alveolar bone and Sharpey's fibers of the periodontal ligament (PDL). However, little is known about the regulatory morphogens that control differentiation and function of these progenitor cells, as well as the progenitor cells involved in crown and root formation.
View Article and Find Full Text PDFCSF-1, a key regulator of mononuclear phagocyte production, is highly expressed in the skeleton by osteoblasts/osteocytes and in a number of nonskeletal tissues such as uterus, kidney and brain. The spontaneous mutant op/op mouse has been the conventional model of CSF-1 deficiency and exhibits a pleiotropic phenotype characterized by osteopetrosis, and defects in hematopoiesis, fertility and neural function. Studies to further delineate the biologic effect of CSF-1 within various tissues have been hampered by the lack of suitable models.
View Article and Find Full Text PDFTooth development is regulated by epithelial-mesenchymal interactions and their reciprocal molecular signaling. Bone morphogenetic protein 2 (Bmp2) is essential for tooth formation. However, the role of Bmp2 during enamel formation remains unknown in vivo.
View Article and Find Full Text PDFHigh and low responding opossums (Monodelphis domestica) differ in their plasma very low density lipoprotein and low density lipoprotein (VLDL+LDL) cholesterol concentrations when they consume a high cholesterol diet, which is due in part to absorption of a higher percentage of dietary cholesterol in high responders. We compared the expression of a set of genes that influence cholesterol absorption in high and low responders fed a basal or a high cholesterol and low fat (HCLF) diet. Up-regulation of the ABCG5, ABCG8, and IBABP genes by the HCLF diet in high and low responders may reduce cholesterol absorption to maintain cholesterol homeostasis.
View Article and Find Full Text PDFGlucocorticoid (GC) therapy is the most frequent cause of secondary osteoporosis. In this study we have demonstrated that GC treatment induced the development of autophagy, preserving osteocyte viability. GC treatment resulted in an increase in autophagy markers and the accumulation of autophagosome vacuoles in vitro and in vivo promoted the onset of the osteocyte autophagy, as determined by expression of autophagy markers in an animal model of GC-induced osteoporosis.
View Article and Find Full Text PDFBone morphogenetic protein 2 (Bmp2) is essential for odontogensis and dentin mineralization. Generation of floxed Bmp2 dental mesenchymal cell lines is a valuable application for studying the effects of Bmp2 on dental mesenchymal cell differentiation and its signaling pathways during dentinogenesis. Limitation of the primary culture of dental mesenchymal cells has led to the development of cell lines that serve as good surrogate models for the study of dental mesenchymal cell differentiation into odontoblasts and mineralization.
View Article and Find Full Text PDFDentin sialophosphoprotein (DSPP) consists of dentin sialoprotein (DSP) and dentin phosphoprotein (DPP). DSPP is highly expressed in mineralized tissues. However, recent studies have shown that DSPP is also expressed in several active metabolic ductal epithelial tissues and exists in a variety of sequences.
View Article and Find Full Text PDFDentin sialophosphoprotein (DSPP), an important odontoblast differentiation marker, is necessary for tooth development and mineralization. Bone morphogenetic protein 2 (BMP2) plays a vital role in odontoblast function via diverse signal transduction systems. We hypothesize that BMP2 regulates DSPP gene transcription and thus odontoblast differentiation.
View Article and Find Full Text PDFOur laboratory and others have shown that overexpression of Dlx5 stimulates osteoblast differentiation. Dlx5(-/-)/Dlx6(-/-) mice have more severe craniofacial and limb defects than Dlx5(-/-), some of which are potentially due to defects in osteoblast maturation. We wished to investigate the degree to which other Dlx genes compensate for the lack of Dlx5, thus allowing normal development of the majority of skeletal elements in Dlx5(-/-) mice.
View Article and Find Full Text PDFSclerostin, the protein product of the Sost gene, is a potent inhibitor of bone formation. Among bone cells, sclerostin is found nearly exclusively in the osteocytes, the cell type that historically has been implicated in sensing and initiating mechanical signaling. The recent discovery of the antagonistic effects of sclerostin on Lrp5 receptor signaling, a crucial mediator of skeletal mechanotransduction, provides a potential mechanism for the osteocytes to control mechanotransduction, by adjusting their sclerostin (Wnt inhibitory) signal output to modulate Wnt signaling in the effector cell population.
View Article and Find Full Text PDFBone osteoblasts and osteocytes express large amounts of connexin (Cx) 43, the component of gap junctions and hemichannels. Previous studies have shown that these channels play important roles in regulating biological functions in response to mechanical loading. Here, we characterized the distribution of mRNA and protein of Cx43 in mechanical loading model of tooth movement.
View Article and Find Full Text PDFDentin sialophosphoprotein (DSPP) consists of dentin sialoprotein (DSP) and dentin phosphoprotein (DPP). The spatial-temporal expression of DSPP is largely restricted during differentiational stages of dental cells. DSPP plays a vital role in tooth development.
View Article and Find Full Text PDFDentin matrix protein 1 (DMP1) is highly expressed in osteocytes and is mechanically responsive. To study osteocyte-specific and mechanically regulated DMP1 gene expression, the transcriptional activity of three cis-regulatory regions was first examined in an osteoblast differentiation model in vitro using a green fluorescent protein (GFP) reporter. Expression of the -9624 to +1996 bp (10 kb) and -7892 to +4439 bp (8 kb) DMP1 cis-regulatory regions dramatically increased in areas of mineralized matrix, in dendritic, osteocyte-like cells.
View Article and Find Full Text PDFDentin matrix protein 1 (DMP1) was originally postulated to be dentin specific. Further analysis showed that DMP1 is also expressed in mature cartilage and bone. In bone tissue, DMP1 is expressed predominantly in late osteoblasts and osteocytes.
View Article and Find Full Text PDFA better understanding of cellular and molecular mechanisms involved in response to mechanical stress is a prerequisite for future improvements in orthodontic treatment. To expand the application of molecular biology techniques in this area of research, we developed and characterized a mouse tooth movement model. The aim of this study was to biomechanically characterize this model and to evaluate the effect of orthodontic stress on the proliferation of periodontal osteoblasts.
View Article and Find Full Text PDFA better understanding of cellular and molecular mechanisms involved in response to mechanical stress is a prerequisite for future improvements in orthodontic treatment. To expand the application of molecular biology techniques in this area of research, we developed and characterized a mouse tooth movement model. The aim of this study was to biomechanically characterize this model and to evaluate the effect of orthodontic stress on the proliferation of periodontal osteoblasts.
View Article and Find Full Text PDF