Publications by authors named "Jelena Vukajlovic-Plestina"

Studying nanomaterial piezoelectricity and triboelectricity is attractive for energy and sensing applications. However, quantitative characterisation of electromechanical effects in nanomaterials is challenging due to practical limitations and possible combination of effects, resulting in contradicting reports at times. When it comes to piezoelectricity at the nanoscale, piezoresponse force microscopy (PFM) is the default characterisation tool.

View Article and Find Full Text PDF

Tuning light emission in bulk and quantum structures by strain constitutes a complementary method to engineer functional properties of semiconductors. Here, we demonstrate the tuning of light emission of GaAs nanowires and their quantum dots up to 115 meV by applying strain through an oxide envelope. We prove that the strain is highly anisotropic and clearly results in a component along the NW longitudinal axis, showing good agreement with the equations of uniaxial stress.

View Article and Find Full Text PDF

Achieving quantum confinement by bottom-up growth of nanowires has so far been limited to the ability of obtaining stable metal droplets of radii around 10 nm or less. This is within reach for gold-assisted growth. Because of the necessity to maintain the group III droplets during growth, direct synthesis of quantum sized structures becomes much more challenging for self-assisted III-V nanowires.

View Article and Find Full Text PDF

Reproducible integration of III-V semiconductors on silicon can open new path toward CMOS compatible optoelectronics and novel design schemes in next generation solar cells. Ordered arrays of nanowires could accomplish this task, provided they are obtained in high yield and uniformity. In this work, we provide understanding on the physical factors affecting size uniformity in ordered GaAs arrays grown on silicon.

View Article and Find Full Text PDF

Guided growth of semiconductor nanowires in nanotube templates has been considered as a potential platform for reproducible integration of III-Vs on silicon or other mismatched substrates. Herein, we report on the challenges and prospects of molecular beam epitaxy of InAs nanowires in SiO/Si nanotube templates. We show how and under which conditions the nanowire growth is initiated by In-assisted vapor-liquid-solid growth enabled by the local conditions inside the nanotube template.

View Article and Find Full Text PDF

GaAs nanowire arrays on silicon offer great perspectives in the optoelectronics and solar cell industry. To fulfill this potential, gold-free growth in predetermined positions should be achieved. Ga-assisted growth of GaAs nanowires in the form of array has been shown to be challenging and difficult to reproduce.

View Article and Find Full Text PDF