Significance: Voltage imaging is a powerful tool for studying the dynamics of neuronal activities in the brain. However, voltage imaging data are fundamentally corrupted by severe Poisson noise in the low-photon regime, which hinders the accurate extraction of neuronal activities. Self-supervised deep learning denoising methods have shown great potential in addressing the challenges in low-photon voltage imaging without the need for ground-truth but usually suffer from the trade-off between spatial and temporal performances.
View Article and Find Full Text PDFIn calcium imaging studies, Ca transients are commonly interpreted as neuronal action potentials (APs). However, our findings demonstrate that robust optical Ca transients primarily stem from complex "AP-Plateaus", while simple APs lacking underlying depolarization envelopes produce much weaker photonic signatures. Under challenging in vivo conditions, these "AP-Plateaus" are likely to surpass noise levels, thus dominating the Ca recordings.
View Article and Find Full Text PDFSignificance: Voltage imaging is a powerful tool for studying the dynamics of neuronal activities in the brain. However, voltage imaging data are fundamentally corrupted by severe Poisson noise in the low-photon regime, which hinders the accurate extraction of neuronal activities. Self-supervised deep learning denoising methods have shown great potential in addressing the challenges in low-photon voltage imaging without the need for ground truth, but usually suffer from the tradeoff between spatial and temporal performance.
View Article and Find Full Text PDFMonitoring spiking activity across large neuronal populations at behaviorally relevant timescales is critical for understanding neural circuit function. Unlike calcium imaging, voltage imaging requires kilohertz sampling rates that reduce fluorescence detection to near shot-noise levels. High-photon flux excitation can overcome photon-limited shot noise, but photobleaching and photodamage restrict the number and duration of simultaneously imaged neurons.
View Article and Find Full Text PDFGenetically encoded voltage indicators (GEVIs) allow optical recordings of membrane potential changes in defined cell populations. Transgenic reporter animals that facilitate precise and repeatable targeting with high expression levels would further the use of GEVIs in the in vivo mammalian brain. However, the literature on developing and applying transgenic mouse lines as vehicles for GEVI expression is limited.
View Article and Find Full Text PDFIn order to understand how brain activity produces adaptive behavior we need large-scale, high-resolution recordings of neuronal activity. Fluorescent genetically encoded voltage indicators (GEVIs) offer the potential for these recordings to be performed chronically from targeted cells in a minimally invasive manner. As the number of GEVIs successfully tested for in vivo use grows, so has the number of open questions regarding the improvements that would facilitate broad adoption of this technology that surpasses mere 'proof of principle' studies.
View Article and Find Full Text PDFGenetically encoded calcium indicators (GECIs) produce unprecedentedly large signals that have enabled routine optical recording of single neuron activity in vivo in rodent brain. Genetically encoded voltage indicators (GEVIs) offer a more direct measure of neuronal electrical status, however the signal-to-noise characteristics and signal polarity of the probes developed to date have precluded routine use in vivo. We applied directed evolution to target modulable areas of the fluorescent protein in GEVI ArcLight to create the first GFP-based GEVI (Marina) that exhibits a ΔF/ΔV with a positive slope relationship.
View Article and Find Full Text PDFOptical imaging of voltage indicators based on green fluorescent proteins (FPs) or archaerhodopsin has emerged as a powerful approach for detecting the activity of many individual neurons with high spatial and temporal resolution. Relative to green FP-based voltage indicators, a bright red-shifted FP-based voltage indicator has the intrinsic advantages of lower phototoxicity, lower autofluorescent background, and compatibility with blue-light-excitable channelrhodopsins. Here, we report a bright red fluorescent voltage indicator (fluorescent indicator for voltage imaging red; FlicR1) with properties that are comparable to the best available green indicators.
View Article and Find Full Text PDFWe report the identification and characterization of two new members of a family of bilirubin-inducible fluorescent proteins (FPs) from marine chlopsid eels and demonstrate a key region of the sequence that serves as an evolutionary switch from non-fluorescent to fluorescent fatty acid-binding proteins (FABPs). Using transcriptomic analysis of two species of brightly fluorescent Kaupichthys eels (Kaupichthys hyoproroides and Kaupichthys n. sp.
View Article and Find Full Text PDFWe previously reported the discovery of a fluorescent protein voltage probe, ArcLight, and its derivatives that exhibit large changes in fluorescence intensity in response to changes of plasma membrane voltage. ArcLight allows the reliable detection of single action potentials and sub-threshold activities in individual neurons and dendrites. The response kinetics of ArcLight (τ1-on ~10 ms, τ2-on ~ 50 ms) are comparable with most published genetically-encoded voltage probes.
View Article and Find Full Text PDFNervous systems process information by integrating the electrical activity of neurons in complex networks. This motivates the long-standing interest in using optical methods to simultaneously monitor the membrane potential of multiple genetically targeted neurons via expression of genetically encoded fluorescent voltage indicators (GEVIs) in intact neural circuits. No currently available GEVIs have demonstrated robust signals in intact brain tissue that enable reliable recording of individual electrical events simultaneously in multiple neurons.
View Article and Find Full Text PDFIEEE Trans Biomed Circuits Syst
October 2012
There is a pressing need in neuroscience for genetically-encoded, fluorescent voltage probes that can be targeted to specific neurons and circuits to allow study of neural activity using fluorescent imaging. We created 90 constructs in which the voltage sensing portion (S1-S4) of Ciona intestinalis voltage sensitive phosphatase (CiVSP) was fused to circularly permuted eGFP. This led to ElectricPk, a probe that is an order of magnitude faster (taus ~1-2 ms) than any currently published fluorescent protein-based voltage probe.
View Article and Find Full Text PDFMonitoring neuronal electrical activity using fluorescent protein-based voltage sensors has been limited by small response magnitudes and slow kinetics of existing probes. Here we report the development of a fluorescent protein voltage sensor, named ArcLight, and derivative probes that exhibit large changes in fluorescence intensity in response to voltage changes. ArcLight consists of the voltage-sensing domain of Ciona intestinalis voltage-sensitive phosphatase and super ecliptic pHluorin that carries the point mutation A227D.
View Article and Find Full Text PDFA substantial increase in the speed of the optical response of genetically encoded fluorescent protein voltage sensors (FP voltage sensors) was achieved by using the voltage-sensing phosphatase genes of Nematostella vectensis and Danio rerio. A potential N. vectensis voltage-sensing phosphatase was identified in silico.
View Article and Find Full Text PDFHerbicide phosphinothricin (PPT) inhibits glutamine synthetase (GS), a key enzyme in nitrogen assimilation, thus causing ammonia accumulation, glutamine depletion and eventually plant death. However, the growth response of Lotus corniculatus L. plants immersed in solutions with a broad range of PPT concentrations is biphasic, with pronounced stimulating effect on biomass production at concentrations ≤ 50 μM and growth inhibition at higher concentrations.
View Article and Find Full Text PDFPeroxidase (POD) and superoxide dismutase (SOD) enzyme activities were analyzed in non-regenerative transformed embryogenic lines of alfalfa (Medicago sativa L.) carrying wound-inducible oryzacystatin I (OC-I), wound-inducible oryzacystatin I antisense (OC-Ias), or hygromycin phosphotransferase (hpt) genes. All of the transformed lines analyzed had elevated levels of all POD isoforms.
View Article and Find Full Text PDF