Among a multitude of stressors to which wildlife is exposed, environmental pollution is a pervasive one that poses a serious threat. The permeable skin of amphibians is likely to increase direct contact of the body with pollutants, making them a group worth studying to access environmental quality. Consequently, finding reliable and complementary biomarkers that will present detectable and predictable changes in response to pollutants is essential to identify pollution sublethal effects on amphibians and to investigate whether these are in part responsible for population declines.
View Article and Find Full Text PDFEnvironmental stress is a major driver of ecological and evolutionary processes in nature. To cope with stress, organisms can adjust through phenotypic plasticity and/or adapt through genetic change. Here, we compared short-term behavioural (activity) and physiological (corticosterone levels, CORT) responses of Rana arvalis tadpoles from two divergent populations (acid origin, AOP, versus neutral origin, NOP) to acid and predator stress.
View Article and Find Full Text PDFBackground: Physiological processes, as immediate responses to the environment, are important mechanisms of phenotypic plasticity and can influence evolution at ecological time scales. In stressful environments, physiological stress responses of individuals are initiated and integrated via the release of hormones, such as corticosterone (CORT). In vertebrates, CORT influences energy metabolism and resource allocation to multiple fitness traits (e.
View Article and Find Full Text PDFIt is well established that animal vocalizations can encode information regarding a sender's identity, sex, age, body size, social rank and group membership. However, the association between physiological parameters, particularly stress hormone levels, and vocal behavior is still not well understood. The cooperatively breeding African meerkats (Suricata suricatta) live in family groups with despotic social hierarchies.
View Article and Find Full Text PDFIn mammals, glucocorticoid (i.e. GC) levels have been associated with specific life-history stages and transitions, reproductive strategies, and a plethora of behaviors.
View Article and Find Full Text PDF