Negative ion photoelectron spectra resulting from the decarboxylation of nine zwitterionic pyridinium dicarboxylates (D(x,y)) are reported. Structural assignments are made on the basis of analogy to the spectra of related species, labeling experiments with (13)C- or (2)H-containing substrates, independent syntheses, and comparison to density functional theory and ab initio (B3LYP and CCSD(T), respectively) results. In some cases, an acid-catalyzed isomerization of the D(x,y)-CO(2) ions was found to take place.
View Article and Find Full Text PDFA comparison of the aromatic nature of the cations and carbenes centered at the 8-position of tricyclo[3.2.1.
View Article and Find Full Text PDFZwitterions are critically important in many biological transformations and are used in numerous chemical processes. The consequences of electrostatic effects on reactivity and physical properties, however, are largely unknown. In this work, we report the results of negative ion photoelectron spectra of nine isomeric pyridinium dicarboxylate zwitterions and three nonzwitterionic methoxycarbonylpyridine carboxylate isomers (-O(2)CPyrCO(2)CH(3)).
View Article and Find Full Text PDFSolvolysis of exo-8-deltacyclyl brosylate proceeds directly through a C(2) delocalized cation to exo-8-deltacyclyl acetate. The solvolysis of the endo epimer presents a more complex picture, reacting via a classical deltacyclyl cation, the nonclassical C(2) delocalized cation, and the isodeltacyclyl cation. The solvolysis of exo-7-isodeltacyclyl brosylate generates the 7-isodeltacyclyl ion and subsequently the C(2) delocalized deltacyclyl cation forming 8-deltacyclyl acetate and exo-7-isodeltacyclyl acetate.
View Article and Find Full Text PDF