Organic anion transporting polypeptides (OATPs) facilitate the cellular uptake of a large number of compounds. Zebrafish Oatp1d1 matches the functional capabilities of human OATP orthologs, particularly in hormone and drug transport. It is highly expressed in the liver and later stages of embryonic development, indicating its critical role in zebrafish physiology and development.
View Article and Find Full Text PDFUptake and elimination kinetics, bioconcentration factors (BCFs), and metabolic transformation of 20 different pharmaceutically active compounds (PhACs), covering a wide range of therapeutic categories and physico-chemical properties, were studied using zebrafish (Danio rerio). The fish were exposed to the mixture of the selected PhACs at environmentally relevant concentrations similar to 10 µg L. The experiments were performed in semi-static conditions and comprised a 7-day uptake period followed by a 7-day depuration period.
View Article and Find Full Text PDFThe increasing use of the zebrafish model in biomedical and (eco)toxicological studies aimed at understanding the function of various proteins highlight the importance of optimizing existing methods to study gene and protein expression and localization in this model. In this context, zebrafish cryosections are still underutilized compared with whole-mount preparations. In this study, we used zebrafish embryos (24-120 hpf) to determine key factors for the preparation of high-quality zebrafish cryosections and to determine the optimal protocol for (immuno)fluorescence analyses of Na /K -ATPase and F-actin, across developmental stages from 1 to 5 dpf.
View Article and Find Full Text PDFFish Physiol Biochem
December 2021
OATP2B1 belongs to a highly conserved organic anion transporting polypeptide (OATP) family of transporters, involved in the cellular uptake of both endogenous and exogenous compounds. The reported substrates of human OATP2B1 include steroid conjugates, bile salts, and thyroid hormones, as well as pharmaceuticals. Human OATP2B1 has orthologous genes in other vertebrate species, including zebrafish (Danio rerio), a widely used model organism in biomedical and environmental research.
View Article and Find Full Text PDFComp Biochem Physiol C Toxicol Pharmacol
May 2020
Organic anion transporters (OATs) are transmembrane proteins which belong to SLC22 subfamily. They are responsible for the uptake of various endo- and xenobiotics into the cells of different organs and tissues. Following our previous work on characterization of zebrafish Oat1 and Oat3, in this study we analyzed interaction of various classes of environmental contaminants with these membrane transporters using the transport activity assay with HEK293 Flp-In cell line stably overexpressing zebrafish Oat1 and Oat3, respectively.
View Article and Find Full Text PDFComp Biochem Physiol B Biochem Mol Biol
October 2019
Organic anion transporters (OATs) are membrane proteins within the Solute carrier family 22 (SLC22). They play important roles in cellular uptake of various organic compounds, and due to their expression in barrier tissues of major excretory and non-excretory organs are considered as crucial elements in absorption and distribution of a wide range of endobiotic and xenobiotic compounds. Based on our previous work and initial insights on SLC22 members in zebrafish (Danio rerio), in this study we aimed at in vitro characterization of Oat1 and Oat3 transporters and understanding of their interaction with potential physiological substrates.
View Article and Find Full Text PDFOATS/Oats are transmembrane proteins that transport a variety of drugs, environmental toxins and endogenous metabolites into the cell. Zebrafish (Danio rerio) has seven OAT orthologs: Oat1, Oat2a-e and Oat3. In this study we specifically address Oat2 (Slc22a7) family.
View Article and Find Full Text PDF