Publications by authors named "Jelena Dorovic"

The newly synthesized coumarin derivative with dopamine, 3-(1-((3,4-dihydroxyphenethyl)amino)ethylidene)-chroman-2,4-dione, was completely structurally characterized by X-ray crystallography. It was shown that several types of hydrogen bonds are present, which additionally stabilize the structure. The compound was tested against different cell lines, healthy human keratinocyte HaCaT, cervical squamous cell carcinoma SiHa, breast carcinoma MCF7, and hepatocellular carcinoma HepG2.

View Article and Find Full Text PDF

The coumarin-orthoaminophenol derivative was prepared under mild conditions. Based on crystallographic structure, IR and Raman, H and C NMR spectra the most applicable theoretical method was determined to be B3LYP-D3BJ. The stability and reactivity parameters were calculated, in the framework of NBO, QTAIM and Fukui functions, form the optimized structure.

View Article and Find Full Text PDF

The experimental and theoretical investigations of structure of the 3-(1-(phenylamino)ethylidene)-chroman-2,4-dione were performed. X-ray structure analysis and spectroscopic methods (FTIR and FT-Raman, H and C NMR), along with the density functional theory calculations (B3LYP functional with empirical dispersion corrections D3BJ in combination with the 6-311 + G(d,p) basis set), were used in order to characterize the molecular structure and spectroscopic behavior of the investigated coumarin derivative. Molecular docking analysis was carried out to identify the potency of inhibition of the title molecule against human's Ubiquinol-Cytochrome C Reductase Binding Protein (UQCRB) and Methylenetetrahydrofolate reductase (MTHFR).

View Article and Find Full Text PDF

The antioxidant properties of some phenolic Schiff bases in the presence of different reactive particles such as (•)OH, (•)OOH, (CH2=CH-O-O(•)), and (-•)O2 were investigated. The thermodynamic values, ΔH BDE, ΔH IP, and ΔH PA, were used for this purpose. Three possible mechanisms for transfer of hydrogen atom, concerted proton-electron transfer (CPET), single electron transfer followed by proton transfer (SET-PT), and sequential proton loss electron transfer (SPLET) were considered.

View Article and Find Full Text PDF

The M05-2X/6-311++G(d,p) and B3LYP-D2/6-311++G(d,p) models are used to evaluate scavenging potency of gallic acid. The hydrogen atom transfer (HAT), sequential proton loss electron transfer (SPLET), and single electron transfer followed by proton transfer (SET-PT) mechanisms of gallic acid with some radicals ((•)OO(-), (•)OH, and CH3OO(•)) were investigated using the corresponding thermodynamic quantities: bond dissociation enthalpy (BDE), ionization potential (IP), and proton affinity (PA). Namely, the ΔHBDE, ΔHIP, and ΔHPA values of the corresponding reactions in some solvents (water, DMSO, pentylethanoate, and benzene) are investigated using an implicit solvation model (SMD).

View Article and Find Full Text PDF

Flavonoids have long been recognised for their general health-promoting properties, of which their antioxidant activity may play an important role. In this work, we have studied the properties of flavonoid morin using semiempirical and density functional theory (DFT) methods in order to validate the application of the recently developed parametric method 6 (PM6). Reaction enthalpies related to mechanisms of free radical scavenging by flavonoid morin were calculated by DFT and PM6 methods in gas-phase, water, DMSO and benzene.

View Article and Find Full Text PDF

Due to intramolecular H-atom transfer, deprotonation of the most acidic 3-OH group of morin yields 2'-O(-) phenoxide anion. The reaction enthalpies related to mechanisms of free radical scavenging activity of this dominant species at a physiological pH of 7.4 were calculated by PM6 and DFT methods in gas-phase, water, benzene and DMSO.

View Article and Find Full Text PDF