Auxin plays a pivotal role in plant development by activating AUXIN RESPONSE FACTORs (ARFs). Under low auxin levels, ARF activity is inhibited by interacting with Aux/IAAs. Aux/IAAs are degraded when the cellular auxin concentration increases, causing the release of ARF inhibition.
View Article and Find Full Text PDFThe successful sexual reproduction of flowering plants depends upon double fertilisation, during which pollen grains, produced within the male floral organ (the anther) deliver two sperm cells to the ovule, buried deep within the ovary, triggering the development of the embryo and the surrounding tissues of the seed. Although much attention has been given to pollen and embryo development, less has been focused on the supporting tissues surrounding these organisms as they develop, the tapetum and the endosperm. Intriguingly, despite their very different origins, these tissues appear to have converged functionally and developmentally.
View Article and Find Full Text PDFDuring flowering plant reproduction, anthers produce pollen grains, the development of which is supported by the tapetum, a nourishing maternal tissue that also contributes non-cell-autonomously to the pollen wall, the resistant external layer on the pollen surface. How the anther restricts movement of the tapetum-derived pollen wall components, while allowing metabolites such as sugars and amino acids to reach the developing pollen, remains unknown. Here, we show experimentally that in arabidopsis thaliana the tapetum and developing pollen are symplastically isolated from each other, and from other sporophytic tissues, from meiosis onwards.
View Article and Find Full Text PDFThe surface of pollen grains is reinforced by pollen wall components produced noncell autonomously by tapetum cells that surround developing pollen within the male floral organ, the anther. Here, we show that tapetum activity is regulated by the GASSHO (GSO) receptor-like kinase pathway, controlled by two sulfated peptides, CASPARIAN STRIP INTEGRITY FACTOR 3 (CIF3) and CIF4, the precursors of which are expressed in the tapetum itself. Coordination of tapetum activity with pollen grain development depends on the action of subtilases, including AtSBT5.
View Article and Find Full Text PDFPlants adapt to heterogeneous soil conditions by altering their root architecture. For example, roots branch when in contact with water by using the hydropatterning response. We report that hydropatterning is dependent on auxin response factor ARF7.
View Article and Find Full Text PDFThe original version of this Article omitted the following from the Acknowledgements: 'We also thank DBT-CREST BT/HRD/03/01/2002.' This has been corrected in both the PDF and HTML versions of the Article.
View Article and Find Full Text PDFPhosphate (P) is an essential macronutrient for plant growth. Roots employ adaptive mechanisms to forage for P in soil. Root hair elongation is particularly important since P is immobile.
View Article and Find Full Text PDFPlants are characterized by their ability to produce new organs post-embryonically throughout their entire life cycle. In particular development of all above-ground organs relies almost entirely on the function of the shoot apical meristem (SAM). The SAM performs a dual role by maintaining a pool of undifferentiated cells and simultaneously driving cell differentiation to initiate organogenesis.
View Article and Find Full Text PDFMol Plant Microbe Interact
August 2013
Verticillium longisporum is a vascular pathogen that infects the Brassicaceae host plants Arabidopsis thaliana and Brassica napus. The soilborne fungus enters the plant via the roots and colonizes the xylem of roots, stems, and leaves. During late stages of infections, Verticillium spp.
View Article and Find Full Text PDFThe soilborne fungal plant pathogen Verticillium longisporum invades the roots of its Brassicaceae hosts and proliferates in the plant vascular system. Typical aboveground symptoms of Verticillium infection on Brassica napus and Arabidopsis thaliana are stunted growth, vein clearing, and leaf chloroses. Here, we provide evidence that vein clearing is caused by pathogen-induced transdifferentiation of chloroplast-containing bundle sheath cells to functional xylem elements.
View Article and Find Full Text PDF