A new ReaxFF reactive force field has been developed for water-electrolyte systems including cations Li, Na, K, and Cs and anions F, Cl, and I. The reactive force field parameters have been trained against quantum mechanical (QM) calculations related to water binding energies, hydration energies and energies of proton transfer. The new force field has been validated by applying it to molecular dynamics (MD) simulations of the ionization of different electrolytes in water and comparison of the results with experimental observations and thermodynamics.
View Article and Find Full Text PDFShear-driven chemical reaction mechanisms are poorly understood because the relevant reactions are often hidden between two solid surfaces moving in relative motion. Here, this phenomenon is explored by characterizing shear-induced polymerization reactions that occur during vapor phase lubrication of α-pinene between sliding hydroxylated and dehydroxylated silica surfaces, complemented by reactive molecular dynamics simulations. The results suggest that oxidative chemisorption of the α-pinene molecules at reactive surface sites, which transfers oxygen atoms from the surface to the adsorbate molecule, is the critical activation step.
View Article and Find Full Text PDFIt has been shown that the rate of decomposition of methyl thiolate species on copper is accelerated by sliding on a methyl thiolate covered surface in ultrahigh vacuum at room temperature. The reaction produces small gas-phase hydrocarbons and deposits sulfur on the surface. Here, a new ReaxFF potential was developed to enable investigation of the molecular processes that induce this mechanochemical reaction by using density functional theory calculations to tune force field parameters for the model system.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2017
Polymerization of allyl alcohol adsorbed and sheared at a silicon oxide interface is studied using tribo-tests in vapor phase lubrication conditions and reactive molecular dynamics simulations. The load dependences of product formation obtained from experiments and simulations were consistent, indicating that the atomic-scale processes observable in the simulations were relevant to the experiments. Analysis of the experimental results in the context of mechanically assisted thermal reaction theory, combined with the atomistic details available from the simulations, suggested that the association reaction pathway of allyl alcohol molecules induced by mechanical shear is quite different from chemically induced polymerization reactions.
View Article and Find Full Text PDFMolecular dynamics (MD) simulations with the ReaxFF reactive force field were carried out to find the atomistic mechanisms for tribochemical reactions occurring at the sliding interface of fully hydroxylated amorphous silica and oxidized silicon as a function of interfacial water amount. The ReaxFF-MD simulations showed a significant amount of atom transfers across the interface occurs during the sliding. In the absence of water molecules, the interfacial mixing is initiated by dehydroxylation followed by the Si-O-Si bond formation bridging two solid surfaces.
View Article and Find Full Text PDFReactive molecular dynamics (ReaxFF) simulations are used to explore the atomic-level tribochemical mechanism of amorphous silica (a-SiO2) in a nanoscale, single-asperity contact in an aqueous environment. These sliding simulations are performed in both a phosphoric acid solution and in pure water under different normal pressures. The results show that tribochemical processes have profound consequences on tribological performance.
View Article and Find Full Text PDF