Publications by authors named "Jehan Esheh"

Localization is one of the most challenging problems in wireless sensor networks (WSNs), primarily driven by the need to develop an accurate and cost-effective localization system for Internet of Things (IoT) applications. While machine learning (ML) algorithms have been widely applied in various WSN-based tasks, their effectiveness is often compromised by limited training data, leading to issues such as overfitting and reduced accuracy, especially when the number of sensor nodes is low. A key strategy to mitigate overfitting involves increasing both the quantity and diversity of the training data.

View Article and Find Full Text PDF

Wireless sensor networks (WSNs) have become widely popular and are extensively used for various sensor communication applications due to their flexibility and cost effectiveness, especially for applications where localization is a main challenge. Furthermore, the Dv-hop algorithm is a range-free localization algorithm commonly used in WSNs. Despite its simplicity and low hardware requirements, it does suffer from limitations in terms of localization accuracy.

View Article and Find Full Text PDF