Publications by authors named "Jehad Kharraz"

The emergence of nano innovations in membrane distillation (MD) has garnered increasing scientific interest. This enables the exploration of state-of-the-art nano-enabled MD membranes with desirable properties, which significantly improve the efficiency and reliability of the MD process and open up opportunities for achieving a sustainable water-energy-environment (WEE) nexus. This comprehensive review provides broad coverage and in-depth analysis of recent innovations in nano-enabled MD membranes, focusing on their role in achieving desirable properties, such as strong liquid-repellence, high resistance to scaling, fouling, and wetting, as well as efficient self-heating and self-cleaning functionalities.

View Article and Find Full Text PDF

Since the discovery of nanobubbles (NBs) in 1994, NBs have been attracting growing attention for their fascinating properties and have been studied for application in various environmental fields, including water and wastewater treatment. However, despite the intensive research efforts on NBs' fundamental properties, especially in the past five years, controversies and disagreements in the published literature have hindered their practical implementation. So far, reviews of NB research have mainly focused on NBs' role in specific treatment processes or general applications, highlighting proof-of-concept and success stories primarily at the laboratory scale.

View Article and Find Full Text PDF

The use of reverse osmosis (RO) for water reclamation has become an essential part of the water supply owing to the ever-increasing water demand and the utmost performance of the RO membranes. Despite the global RO implementation, its inferior rejection against low molecular weight contaminants of emerging concerns (CECs) (i.e.

View Article and Find Full Text PDF

Water pollution caused by oil spills or sewage discharges has become a serious ecological environmental issue. Despite the membrane separation technique having a promising application in wastewater purification, the membrane fabrication method and separation robustness have remained unsatisfactory until now. Herein, we developed a novel strategy, spacer-assisted sequential phase conversion, to create a patterned polyvinylidene fluoride@polypropylene (P-PVDF@PP) substrate membrane with a multiscale roughened surface.

View Article and Find Full Text PDF

In this study, we report the use of nanobubbles (NBs) as a simple and facile approach to effectively delay scaling in membrane distillation (MD) during the treatment of highly saline feed (100 g L). Unlike conventional gas bubbling in MD for improving the hydrodynamic flow conditions in the feed channel, here we generated air NBs with an average size of 128.81 nm in the feed stream and examined their impact on membrane scaling inhibition during MD operation.

View Article and Find Full Text PDF

Herein, we demonstrate the desalination performance of a solar-driven membrane distillation (MD) process, where upon light illumination, a highly localized heating of plasmonic titanium nitride nanoparticles (TiN NPs) immobilized on a hydrophobic membrane provides the thermal driving force for the MD operation. The engineered TiN photothermal membrane induces vapor generation directly at the feed-membrane interface upon solar irradiation, thereby eliminating the need to heat the entire bulk feed water. The results indicate that the average vapor flux through the TiN photothermal membrane without any auxiliary feed heating was recorded as 1.

View Article and Find Full Text PDF

A hierarchically assembled superomniphobic membrane with three levels of reentrant structure was designed and fabricated to enable effective treatment of low surface tension, hypersaline oily wastewaters using direct contact membrane distillation (DCMD). The overall structure is a combination of macro corrugations obtained by surface imprinting, with the micro spherulites morphology achieved through the applied phase inversion method and nano patterns obtained by fluorinated Silica nanoparticles (SiNPs) coating. This resulted in a superomniphobic membrane surface with remarkable anti-wetting properties repelling both high surface tension water and low surface tension oils.

View Article and Find Full Text PDF

Electrospun nanofiber membranes (ENMs) have garnered increasing interest due to their controllable nanofiber structure and high void volume fraction properties in membrane distillation (MD). However, MD technology still faces limitations mainly due to low permeate flux and membrane wetting for feeds containing low surface tension compounds. Perfluorinated superhydrophobic membranes could be an alternative, but it has negative environmental impacts.

View Article and Find Full Text PDF