The Shaker family of voltage-gated K channels has been thought of as an animal-specific ion channel family that diversified in concert with nervous systems. It comprises four functionally independent gene subfamilies (Kv1-4) that encode diverse neuronal K currents. Comparison of animal genomes predicts that only the Kv1 subfamily was present in the animal common ancestor.
View Article and Find Full Text PDFHere we explore the evolutionary origins of fast N-type ball-and-chain inactivation in Shaker (Kv1) K channels by functionally characterizing Shaker channels from the ctenophore (comb jelly) Mnemiopsis leidyi. Ctenophores are the sister lineage to other animals and Mnemiopsis has >40 Shaker-like K channels, but they have not been functionally characterized. We identified three Mnemiopsis channels (MlShak3-5) with N-type inactivation ball-like sequences at their N termini and functionally expressed them in Xenopus oocytes.
View Article and Find Full Text PDFConsiderable evidence suggests that day-night rhythms in the functional expression of subthreshold potassium (K+) channels regulate daily oscillations in the spontaneous firing rates of neurons in the suprachiasmatic nucleus (SCN), the master circadian pacemaker in mammals. The K+ conductance(s) driving these daily rhythms in the repetitive firing rates of SCN neurons, however, have not been identified. To test the hypothesis that subthreshold Kv12.
View Article and Find Full Text PDFConsiderable evidence suggests that day-night rhythms in the functional expression of subthreshold potassium (K ) channels regulate daily oscillations in the rates of spontaneous action potential firing of neurons in the suprachiasmatic nucleus (SCN), the master circadian pacemaker in mammals. The K conductance(s) driving these daily rhythms in repetitive firing rates, however, have not been identified. To test the hypothesis that subthreshold Kv12.
View Article and Find Full Text PDFIon channels are highly diverse in the cnidarian model organism Nematostella vectensis (Anthozoa), but little is known about the evolutionary origins of this channel diversity and its conservation across Cnidaria. Here, we examined the evolution of voltage-gated K+ channels in Cnidaria by comparing genomes and transcriptomes of diverse cnidarian species from Anthozoa and Medusozoa. We found an average of over 40 voltage-gated K+ channel genes per species, and a phylogenetic reconstruction of the Kv, KCNQ, and Ether-a-go-go (EAG) gene families identified 28 voltage-gated K+ channels present in the last common ancestor of Anthozoa and Medusozoa (23 Kv, 1 KCNQ, and 4 EAG).
View Article and Find Full Text PDFThe functionally diverse cyclic nucleotide binding domain (CNBD) superfamily of cation channels contains both depolarization-gated (e.g., metazoan EAG family K+ channels) and hyperpolarization-gated channels (e.
View Article and Find Full Text PDFThe centralized nervous systems of bilaterian animals rely on directional signaling facilitated by polarized neurons with specialized axons and dendrites. It is not known whether axo-dendritic polarity is exclusive to bilaterians or was already present in early metazoans. We therefore examined neurite polarity in the starlet sea anemone (Cnidaria).
View Article and Find Full Text PDFGenome sequence data from a range of animal species are raising questions about the origins of glutamate receptors.
View Article and Find Full Text PDFPlant voltage-gated K channels have been referred to as "plant Shakers" in reference to animal Shaker channels, the first K channels identified. Recent advances in our knowledge of K channel evolution and structure have significantly deepened the divide between these plant and animal K channels, suggesting that it is time to completely retire the "plant Shaker" designation. Evolutionary genomics reveals that plant voltage-gated K channels and metazoan Shakers derive from distinct prokaryotic ancestors.
View Article and Find Full Text PDFThe Shaker-like family of voltage-gated K channels comprises four functionally independent gene subfamilies, Shaker (Kv1), Shab (Kv2), Shaw (Kv3), and Shal (Kv4), each of which regulates distinct aspects of neuronal excitability. Subfamily-specific assembly of tetrameric channels is mediated by the N-terminal T1 domain and segregates Kv1-4, allowing multiple channel types to function independently in the same cell. Typical Shaker-like Kv subunits can form functional channels as homotetramers, but a group of mammalian Kv2-related genes (Kv5.
View Article and Find Full Text PDFIn vertebrate neurons, the axon initial segment (AIS) is specialized for action potential initiation. It is organized by a giant 480 Kd variant of ankyrin G (AnkG) that serves as an anchor for ion channels and is required for a plasma membrane diffusion barrier that excludes somatodendritic proteins from the axon. An unusually long exon required to encode this 480Kd variant is thought to have been inserted only recently during vertebrate evolution, so the giant ankyrin-based AIS scaffold has been viewed as a vertebrate adaptation for fast, precise signaling.
View Article and Find Full Text PDFTRPV ion channels are directly activated by sensory stimuli and participate in thermo-, mechano- and chemo-sensation. They are also hypothesized to respond to endogenous agonists that would modulate sensory responses. Here, we show that the nicotinamide (NAM) form of vitamin B is an agonist of a Caenorhabditis elegans TRPV channel.
View Article and Find Full Text PDFCurr Opin Plant Biol
October 2016
By controlling the opening and closure of the stomatal pores through which gas exchange occurs, guard cells regulate two of the most important plant physiological processes: photosynthesis and transpiration. Accordingly, guard cells have evolved exquisite sensory systems. Here we summarize recent literature on guard cell sensing of light, drought (via the phytohormone abscisic acid (ABA)), and CO.
View Article and Find Full Text PDFHCN channels play a unique role in bilaterian physiology as the only hyperpolarization-gated cation channels. Their voltage-gating is regulated by cyclic nucleotides and phosphatidylinositol 4,5-bisphosphate (PIP2). Activation of HCN channels provides the depolarizing current in response to hyperpolarization that is critical for intrinsic rhythmicity in neurons and the sinoatrial node.
View Article and Find Full Text PDFPhosphatidylinositol 4,5-bisphosphate (PIP2) regulates Shaker K+ channels and voltage-gated Ca2+ channels in a bimodal fashion by inhibiting voltage activation while stabilizing open channels. Bimodal regulation is conserved in hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, but voltage activation is enhanced while the open channel state is destabilized. The proposed sites of PIP2 regulation in these channels include the voltage-sensor domain (VSD) and conserved regions of the proximal cytoplasmic C terminus.
View Article and Find Full Text PDFPolarized distribution of signaling molecules to axons and dendrites facilitates directional information flow in complex vertebrate nervous systems. The topic we address here is when the key aspects of neuronal polarity evolved. All neurons have a central cell body with thin processes that extend from it to cover long distances, and they also all rely on voltage-gated ion channels to propagate signals along their length.
View Article and Find Full Text PDFWe examined the evolutionary origins of the ether-à-go-go (EAG) family of voltage-gated K(+) channels, which have a strong influence on the excitability of neurons. The bilaterian EAG family comprises three gene subfamilies (Eag, Erg and Elk) distinguished by sequence conservation and functional properties. Searches of genome sequence indicate that EAG channels are metazoan specific, appearing first in ctenophores.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2015
We examined the origins and functional evolution of the Shaker and KCNQ families of voltage-gated K(+) channels to better understand how neuronal excitability evolved. In bilaterians, the Shaker family consists of four functionally distinct gene families (Shaker, Shab, Shal, and Shaw) that share a subunit structure consisting of a voltage-gated K(+) channel motif coupled to a cytoplasmic domain that mediates subfamily-exclusive assembly (T1). We traced the origin of this unique Shaker subunit structure to a common ancestor of ctenophores and parahoxozoans (cnidarians, bilaterians, and placozoans).
View Article and Find Full Text PDFMammalian Ether-a-go-go related gene (Erg) family voltage-gated K(+) channels possess an unusual gating phenotype that specializes them for a role in delayed repolarization. Mammalian Erg currents rectify during depolarization due to rapid, voltage-dependent inactivation, but rebound during repolarization due to a combination of rapid recovery from inactivation and slow deactivation. This is exemplified by the mammalian Erg1 channel, which is responsible for IKr, a current that repolarizes cardiac action potential plateaus.
View Article and Find Full Text PDFThe Ether-a-go-go (EAG) superfamily of voltage-gated K(+) channels consists of three functionally distinct gene families (Eag, Elk, and Erg) encoding a diverse set of low-threshold K(+) currents that regulate excitability in neurons and muscle. Previous studies indicate that external acidification inhibits activation of three EAG superfamily K(+) channels, Kv10.1 (Eag1), Kv11.
View Article and Find Full Text PDFThe genome of the cnidarian Nematostella vectensis (starlet sea anemone) provides a molecular genetic view into the first nervous systems, which appeared in a late common ancestor of cnidarians and bilaterians. Nematostella has a surprisingly large and diverse set of neuronal signaling genes including paralogs of most neuronal signaling molecules found in higher metazoans. Several ion channel gene families are highly expanded in the sea anemone, including three subfamilies of the Shaker K(+) channel gene family: Shaker (Kv1), Shaw (Kv3) and Shal (Kv4).
View Article and Find Full Text PDFHyperpolarization-activated Cyclic Nucleotide (HCN) channels are voltage-gated cation channels and are critical for regulation of membrane potential in electrically active cells. To understand the evolution of these channels at the molecular level, we cloned and examined two of three HCN homologs of the urochordate Ciona intestinalis (ciHCNa and ciHCNb). ciHCNa is like mammalian HCNs in that it possesses similar electrical function and undergoes N-glycosylation of a sequon near the pore.
View Article and Find Full Text PDFRecent reports of increased tolerance to artemisinin derivatives--the most recently adopted class of antimalarials--have prompted a need for new treatments. The spirotetrahydro-beta-carbolines, or spiroindolones, are potent drugs that kill the blood stages of Plasmodium falciparum and Plasmodium vivax clinical isolates at low nanomolar concentration. Spiroindolones rapidly inhibit protein synthesis in P.
View Article and Find Full Text PDFWe found the voltage-gated K+ channel Kv12.2 to be a potent regulator of excitability in hippocampal pyramidal neurons. Genetic deletion and pharmacologic block of Kv12.
View Article and Find Full Text PDF