Publications by authors named "Jeffry Wicaksana"

The purpose of federated learning is to enable multiple clients to jointly train a machine learning model without sharing data. However, the existing methods for training an image segmentation model have been based on an unrealistic assumption that the training set for each local client is annotated in a similar fashion and thus follows the same image supervision level. To relax this assumption, in this work, we propose a label-agnostic unified federated learning framework, named FedMix, for medical image segmentation based on mixed image labels.

View Article and Find Full Text PDF

The performance of deep networks for medical image analysis is often constrained by limited medical data, which is privacy-sensitive. Federated learning (FL) alleviates the constraint by allowing different institutions to collaboratively train a federated model without sharing data. However, the federated model is often suboptimal with respect to the characteristics of each client's local data.

View Article and Find Full Text PDF

Privacy concerns make it infeasible to construct a large medical image dataset by fusing small ones from different sources/institutions. Therefore, federated learning (FL) becomes a promising technique to learn from multi-source decentralized data with privacy preservation. However, the cross-client variation problem in medical image data would be the bottleneck in practice.

View Article and Find Full Text PDF