Over the last 5 years, IR-MALDESI-MS (Infrared Matrix-Assisted Laser Desorption Electrospray Ionization Mass Spectrometry) has been demonstrated for use in a range of high-throughput biochemical and cellular assays with remarkable sample acquisition rates up to 22 Hz for a single 384-well assay plate. With such high single plate acquisition rates, the rate limiting step becomes how fast subsequent plates can be presented to the MS for analysis. To make this transfer as fast as possible while maintaining safe operation in a laboratory environment, we developed a collaborative robotic plate transfer system (CRPTS) that combines a 6-axis robot with dual plate grippers, a 7th axis conveyor stage, and a 420-plate capacity sample loading window.
View Article and Find Full Text PDFIntravenous (IV) administration of poorly water-soluble small molecule therapeutics can lead to precipitation during mixing with blood. This can limit characterization of pharmacological and safety endpoints in preclinical models. Most often, tests of kinetic and thermodynamic solubility are used to optimize the formulation for solubility prior to infusion in animals, but these do not capture the dynamic precipitation processes that take place during in-vivo administration.
View Article and Find Full Text PDFInfrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) mass spectrometry is an ambient-direct sampling method that is being developed for high-throughput, label-free, biochemical screening of large-scale compound libraries. Here, we report the development of an ultra-high-throughput continuous motion IR-MALDESI sampling approach capable of acquiring data at rates up to 22.7 samples per second in a 384-well microtiter plate.
View Article and Find Full Text PDFCentralized high-throughput purification laboratories routinely produce large numbers of test tubes with fractions containing the purified compounds of interest interspersed with test tubes containing fractions collected from undesired peaks. Because the next step after purification entails the removal of the solvent in a centrifugal evaporator with multiple sample positions per rotor, select test tubes must be labeled prior to dry-down to track the identity of each compound. The diversity of test tube sizes and tray configurations from different chromatography system vendors complicates this labeling task.
View Article and Find Full Text PDFAutomation of chemistry at a pharmaceutical company commonly entails bringing commercial solutions in-house, reproducing manual processes with a robot, or integrating multiple instruments to eliminate human intervention. A strategy of industrializing proven approaches, while financially justifiable, however, does not encourage innovation. On the other hand, trying to automate unproven or difficult processes may seem to be risky but can actually accelerate the adoption, modification, or rejection of novel technologies.
View Article and Find Full Text PDFThe efficient synthesis of cyclopropyl boronic esters in library format using a diazomethane flow reactor has been achieved. A pivotal component of the system is a fully automated tube-in-tube reactor allowing for safe handling of hazardous diazomethane on repeated small scale and for the generation of larger quantities of product. The setup enables the repeated execution of Pd-catalyzed cyclopropanation reactions without compromising its operation over time.
View Article and Find Full Text PDFA flexible and integrated flow-chemistry-synthesis-purification compound-generation and sample-management platform has been developed to accelerate the production of small-molecule organic-compound drug candidates in pharmaceutical research. Central to the integrated system is a Mitsubishi robot, which hands off samples throughout the process to the next station, including synthesis and purification, sample dispensing for purity and quantification analysis, dry-down, and aliquot generation.
View Article and Find Full Text PDFExperiments were performed to demonstrate the potential of counter-current chromatography (CCC) for the isolation of drugs and their metabolites from biological matrices relevant to the metabolism studies of pharmaceutical research. Examples of typical drugs are spiked into biological media ex vivo to provide test samples for analysis. A mass spectrometer hyphenated to a CCC allows for the detection of small molecule drugs within the matrix through selected ion monitoring, and fraction collection can provide material for further structural elucidation by NMR.
View Article and Find Full Text PDFExperiments were performed to evaluate whether counter-current chromatography (CCC) could function as an alternative purification method to reversed-phase high-performance liquid chromatography (RP-HPLC) and normal-phase supercritical fluid chromatography (SFC). RP-HPLC and SFC are the routine methods currently used in our high-throughput purification (HTP) facility for the purification of high-throughput organic synthesis (HTOS) libraries and medicinal chemistry reaction mixtures. Pre-equilibration of the solvent mixture layers was not mandatory for effective chromatography when hexanes-ethyl acetate-methanol-water (HEMW) solvent mixtures were used.
View Article and Find Full Text PDFThis manuscript details the construction of a fully automated flow hydrogenation apparatus for use in high-throughput organic synthesis. The instrument comprises of a Bohdan robot platform coupled with a ThalesNano H-cube hydrogenator and a series of solvent valves and pumping mechanisms. Using this instrument, we have been able to fully automate a number of key transformations that could not otherwise be conveniently undertaken in a high-throughput manner.
View Article and Find Full Text PDFThe modulation of fatty acid metabolism and especially the stimulation of fatty acid oxidation in liver or skeletal muscle are attractive therapeutic approaches for the treatment of obesity and the associated insulin resistance. However, current beta-oxidation assays are run in very low throughput, which represents an obstacle for drug discovery in this area. Here we describe results for a 48-well beta-oxidation assay using a new instrument design.
View Article and Find Full Text PDFThe drug discovery process centers around finding and optimizing novel compounds active at therapeutic targets. This process involves direct and indirect measures of how compounds affect the behavior of the target in question. The sheer number of compounds that must be tested poses problems for classes of ion channel targets for which direct functional measurements (e.
View Article and Find Full Text PDF