Publications by authors named "Jeffrey Wolchok"

There are currently no surgical procedures that effectively address the treatment of volumetric muscle loss (VML) injuries that has motivated the development of implantable scaffolding. In this study, the effectiveness of an allogenic scaffold fabricated using fibers built from the extracellular matrix (ECM) collected from muscle fibroblast cells during growth in culture was explored using a hindlimb VML injury (tibialis anterior muscle) in a rat model. Recovery outcomes (8 weeks) were explored in comparison with unrepaired controls as well previously examined allogenic scaffolds prepared from decellularized skeletal muscle (DSM) tissue ( = 9/sample group).

View Article and Find Full Text PDF

Volumetric muscle loss overwhelms skeletal muscle's ordinarily capable regenerative machinery, resulting in severe functional deficits that have defied clinical repair strategies. In this manuscript we pair the early in vivo functional response induced by differing volumetric muscle loss tissue engineering repair strategies that are broadly representative of those explored by the field (scaffold alone, cells alone, or scaffold + cells) to the transcriptomic response induced by each intervention. We demonstrate that an implant strategy comprising allogeneic decellularized skeletal muscle scaffolds seeded with autologous minced muscle cellular paste (scaffold + cells) mediates a pattern of increased expression for several genes known to play roles in axon guidance and peripheral neuroregeneration, as well as several other key genes related to inflammation, phagocytosis, and extracellular matrix regulation.

View Article and Find Full Text PDF

This study was designed to test the hypothesis that in addition to repairing the architectural and cellular cues via regenerative medicine, the delivery of immune cues (immunotherapy) may be needed to enhance regeneration following volumetric muscle loss (VML) injury. We identified IL-10 signaling as a promising immunotherapeutic target. To explore the impact of targeting IL-10 signaling, tibialis anterior (TA) VML injuries were created and then treated in rats using autologous minced muscle (MM).

View Article and Find Full Text PDF

The pathological effects of repeated traumatic brain injuries (TBIs) are largely unknown. To gain a detailed understanding of the cortical tissue acute biological response after one or two TBIs, we utilized RNA-sequencing and protein mass spectrometry techniques. Using our previously validated C57Bl/6 weight-drop model, we administered one or two TBIs of a mild or moderate severity.

View Article and Find Full Text PDF

Aging hinders the effectiveness of regenerative medicine strategies targeting the repair of volumetric muscle loss (VML) injury. Anabolic steroids have been shown to improve several factors which contribute to the age-related decline in muscle's regenerative capacity. In this study, the impact of exogenous nandrolone decanoate (ND) administration on the effectiveness of a VML regenerative repair strategy was explored using an aged animal model.

View Article and Find Full Text PDF

New Findings: What is the central question of this study? Following large traumatic loss of muscle tissue (volumetric muscle loss; VML), permanent functional and cosmetic deficits present themselves and regenerative therapies alone have not been able to generate a robust regenerative response: how does the addition of rehabilitative therapies affects the regenerative response? What is the main finding and its importance? Using exercise along with autologous muscle repair, we demonstrated accelerated muscle force recovery response post-VML. The accentuated force recovery 2 weeks post-VML would allow patients to return home sooner than allowed with current therapies.

Abstract: Skeletal muscle can regenerate from damage but is overwhelmed with extreme tissue loss, known as volumetric muscle loss (VML).

View Article and Find Full Text PDF

The purpose of this study was to determine whether sarcopenic obesity accelerates impairments in muscle maintenance through the investigation of cell cycle progression and myogenic, inflammatory, catabolic and protein synthetic signaling in mouse gastrocnemius muscles. At 4 weeks old, 24 male C57BL/6 mice were fed either a high fat diet (HFD, 60 % fat) or normal chow (NC, 17 % fat) for either 8-12 weeks or 21-23 months. At 3-4 months or 22-24 months the gastrocnemius muscles were excised.

View Article and Find Full Text PDF

Introduction: Extracellular matrix (ECM) gels have shown efficacy for the treatment of damaged tissues, most notably cardiac muscle. We hypothesized that the ECM gel prepared from skeletal muscle could be used as a treatment strategy for fatty shoulder cuff muscle degeneration.

Methods: We conducted experiments to (1) evaluate host biocompatibility to ECM gel injection using a rat model and (2) examine the effect of ECM gel injection on muscle recovery after delayed repair of a released supraspinatus (SSP) tendon using a rabbit model.

View Article and Find Full Text PDF

A key event in the etiology of volumetric muscle loss (VML) injury is the bulk loss of structural cues provided by the underlying extracellular matrix (ECM). To re-establish the lost cues, there is broad consensus within the literature supporting the utilization of implantable scaffolding. However, while scaffold based regenerative medicine strategies have shown potential, there remains a significant amount of outcome variability observed across the field.

View Article and Find Full Text PDF

In this study, the influence of age on effectiveness of regenerative repair for the treatment of volumetric muscle loss (VML) injury was explored. Tibialis anterior (TA) VML injuries were repaired in both 3- and 18-month-old animal models (Fischer 344 rat) using allogeneic decellularized skeletal muscle (DSM) scaffolds supplemented with autologous minced muscle (MM) paste. Within the 3-month animal group, TA peak contractile force was significantly improved (79% of normal) in response to DSM+MM repair.

View Article and Find Full Text PDF

Engineered scaffolds derived from extracellular matrix (ECM) have driven significant interest in medicine for their potential in expediting wound closure and healing. Extraction of extracellular matrix from fibrogenic cell cultures in vitro has potential for generation of ECM from human- and potentially patient-specific cell lines, minimizing the presence of xenogeneic epitopes which has hindered the clinical success of some existing ECM products. A significant challenge in in vitro production of ECM suitable for implantation is that ECM production by cell culture is typically of relatively low yield.

View Article and Find Full Text PDF

Pathological changes to the physical and chemical properties of brain extracellular matrix (ECM) occur following injury. It is generally assumed that astrocytes play an important role in these changes. What remain unclear are the triggers that lead to changes in the regulation of ECM by astrocytes following injury.

View Article and Find Full Text PDF

The therapeutic potential of biological scaffolds as adjuncts to synthetic polymers motivates the engineering of fibers formed using the extracellular matrix (ECM) secreted by cells. To capture the ECM secreted by cells during in vitro culture, a solvent degradable hollow fiber membrane (HFM) was created and utilized as a cell culture platform. NIH/3T3 fibroblasts were injected into the narrow (0.

View Article and Find Full Text PDF

Valve interstitial cells are dispersed throughout the heart valve and play an important role in maintaining its integrity, function, and phenotype. While prior studies have detailed the role of external mechanical and biological factors in the function of the interstitial cell, the role of cell shape in regulating contractile function, in the context of normal and diseased phenotypes, is not well understood. Thus, the aim of this study was to elucidate the link between cell shape, phenotype, and acute functional contractile output.

View Article and Find Full Text PDF

Skeletal muscle is capable of robust self-repair following mild trauma, yet in cases of traumatic volumetric muscle loss (VML), where more than 20% of a muscle's mass is lost, this capacity is overwhelmed. Current autogenic whole muscle transfer techniques are imperfect, which has motivated the exploration of implantable scaffolding strategies. In this study, the use of an allogeneic decellularized skeletal muscle (DSM) scaffold with and without the addition of minced muscle (MM) autograft tissue was explored as a repair strategy using a lower-limb VML injury model (n = 8/sample group).

View Article and Find Full Text PDF

Non-penetrating or mild traumatic brain injury (mTBI) is commonly experienced in accidents, the battlefield and in full-contact sports. Astrocyte cellular edema is one of the major factors that leads to high morbidity post-mTBI. Various studies have reported an upregulation of aquaporin-4 (AQP4), a water channel protein, following brain injury.

View Article and Find Full Text PDF

Termed volumetric muscle loss (VML), the bulk loss of skeletal muscle tissue either through trauma or surgery overwhelms the capacity for repair, leading to the formation of non-contractile scar tissue. The myogenic potential, along with other factors that influence wound repair are known to decline with age. In order to develop effective treatment strategies for VML injuries that are effective across a broad range of patient populations, it is necessary to understand how the response to VML injury is affected by aging.

View Article and Find Full Text PDF

The use of decellularized skeletal muscle (DSM) as a cell substrate and scaffold for the repair of volumetric muscle loss injuries has shown therapeutic promise. The performance of DSM materials motivated our interest in exploring the chemical and physical properties of this promising material. We suggest that these properties could serve as a blueprint for the development of next generation engineered materials with DSM mimetic properties.

View Article and Find Full Text PDF

The implantation of decellularized tissue has shown effectiveness as a strategy for the treatment of volumetric muscle loss (VML) injuries. The preparation of decellularized tissue typically relies on the diffusion driven removal of cellular debris. For bulky tissues like muscle, the process can be lengthy, which introduces opportunities for both tissue contamination and degradation of key ECM molecules.

View Article and Find Full Text PDF

Mechanical stimulation of cell cultures has been shown be an effective means of enhancing ECM production. ECM produced from vocal fold fibroblast cultures has the potential for therapeutic use for vocal fold repair. However, current bioreactor designs generally fail to produce physiological relevant frequency and strain values.

View Article and Find Full Text PDF

For many patients, rectal catheters are an effective means to manage bowel incontinence. Unfortunately, the incidence of catheter leakage in these patients remains troublingly high. Matching the mechanical properties of the catheter and the surrounding tissue may improve the catheter seal and reduce leakage.

View Article and Find Full Text PDF

The performance of implantable biomaterials derived from decellularized tissue, including encouraging results with skeletal muscle, suggests that the extracellular matrix (ECM) derived from native tissue has promising regenerative potential. Yet, the supply of biomaterials derived from donated tissue will always be limited, which is why the in-vitro fabrication of ECM biomaterials that mimic the properties of tissue is an attractive alternative. Towards this end, our group has utilized a novel method to collect the ECM that skeletal muscle myoblasts secrete and form it into implantable scaffolds.

View Article and Find Full Text PDF

The collection of cell-derived extracellular matrix (ECM) to form implantable biomaterials has therapeutic potential. However, a significant challenge to the creation of these biomaterials is the ability to produce an adequate quantity of ECM from cells in culture. Mechanical stimulation has long been viewed as a practical means to enhance cellular matrix production.

View Article and Find Full Text PDF

We have recently reported on a bench-top approach for isolating extracellular matrix (ECM) from pure populations of cells grown in culture using sacrificial, open-celled foams to concentrate and capture the ECM. To increase both the accumulation and the strength of the ECM harvested, cell-seeded polyurethane (PU) foams were cultured in media supplemented with either transforming growth factor β-1 (TGFβ1) or hepatocyte growth factor (HGF). At the end of a 3-week culture period, ECM yield was significantly increased for samples conditioned in supplemented media.

View Article and Find Full Text PDF