Publications by authors named "Jeffrey Weidlick"

CD27 is a costimulatory molecule that provides a complementary target to the PD-1/PD-L1 checkpoint axis on T cells. Combining a CD27 agonist antibody with PD-1/PD-L1 blockade has shown synergistic antitumor activity in preclinical models, which led to clinical studies of the combination in cancer patients. We theorized that coupling CD27 costimulation with PD-1/PD-L1 blockade in a bispecific antibody (BsAb) may provide greater immune activating properties than combining the individual mAbs due to enhanced CD27 activation by cross-linking through PD-L1 and Fc receptors.

View Article and Find Full Text PDF

Limitations of immunotherapy include poorly functioning events early in the immune response cycle, such as efficient antigen presentation and T cell priming. CD40 signaling in dendritic cells leads to upregulation of cell surface costimulatory and MHC molecules and the generation of cytokines, which promotes effective priming of CD8 effector T cells while minimizing T cell anergy and the generation of regulatory T cells. This naturally occurs through interaction with CD40 ligand (CD40L) expressed on CD4 T-helper cells.

View Article and Find Full Text PDF

Previous studies have documented that selective delivery of protein antigens to cells expressing mannose receptor (MR) can lead to enhanced immune responses. We postulated that agents that influenced the MR expression level, and the activation and migration status of MR-expressing antigen presenting cells, would modulate immune responses to MR-targeted vaccines. To address this question, we investigated the effect of clinically used adjuvants in human MR transgenic (hMR-Tg) mice immunized with an MR-targeting cancer vaccine composed of the human anti-MR monoclonal antibody B11 fused with the oncofetal protein, human chorionic gonadotropin beta chain (hCGβ), and referred to as B11-hCGβ.

View Article and Find Full Text PDF

The CD70/CD27 pathway plays a significant role in the control of immunity and tolerance, and previous studies demonstrated that targeting murine CD27 (mCD27) with agonist mAbs can mediate antitumor efficacy. We sought to exploit the potential of this pathway for immunotherapy by developing 1F5, a fully human IgG1 mAb to human CD27 (hCD27) with agonist activity. We developed transgenic mice expressing hCD27 under control of its native promoter for in vivo testing of the Ab.

View Article and Find Full Text PDF

Purpose: The TNF receptor superfamily member CD27 is best known for its important role in T-cell immunity but is also recognized as a cell-surface marker on a number of B- and T-cell malignancies. In this article, we describe a novel human monoclonal antibody (mAb) specific for CD27 with properties that suggest a potential utility against malignancies that express CD27.

Experimental Design: The fully human mAb 1F5 was generated using human Ig transgenic mice and characterized by analytical and functional assays in vitro.

View Article and Find Full Text PDF

Background: Tumor necrosis factor alpha (TNFalpha) is implicated in a wide variety of pathological and physiological processes, including chronic inflammatory conditions, coronary artery disease, diabetes, obesity, and cachexia. Transgenic mice expressing human TNFalpha (hTNFalpha) have previously been described as a model for progressive rheumatoid arthritis. In this report, we describe extensive characterization of an hTNFalpha transgenic mouse line.

View Article and Find Full Text PDF