Many proteins are composed of independently-folded domains connected by flexible linkers. The primary sequence and length of such linkers can set the effective concentration for the tethered domains, which impacts rates of association and enzyme activity. The length of such linkers can be sensitive to environmental conditions, which raises questions as to how studies in dilute buffer relate to the highly-crowded cellular environment.
View Article and Find Full Text PDFProtein kinase R (PKR) is a central component of the innate immunity antiviral pathway and is activated by dsRNA. PKR contains a C-terminal kinase domain and two tandem dsRNA binding domains. In the canonical activation model, binding of multiple PKR monomers to dsRNA enhances dimerization of the kinase domain, leading to enzymatic activation.
View Article and Find Full Text PDFBacterial pore-forming toxins (PFTs) are structurally diverse pathogen-secreted proteins that form cell-damaging channels in the membranes of host cells. Most PFTs are released as water-soluble monomers that first oligomerize on the membrane before inserting a transmembrane channel. To modulate specificity and increase potency, many PFTs recognize specific cell surface receptors that increase the local toxin concentration on cell membranes, thereby facilitating channel formation.
View Article and Find Full Text PDFPore-forming toxins (PFTs) are a class of pathogen-secreted molecules that oligomerize to form transmembrane channels in cellular membranes. Determining the mechanism for how PFTs bind membranes is important in understanding their role in disease and for developing possible ways to block their action. Vibrio vulnificus, an aquatic pathogen responsible for severe food poisoning and septicemia in humans, secretes a PFT called V.
View Article and Find Full Text PDFJuxtaposed to either or both ends of the proteasome core particle (CP) can exist a 19S regulatory particle (RP) that recognizes and prepares ubiquitinated proteins for proteolysis. RP triphosphatase proteins (Rpt1-Rpt6), which are critical for substrate translocation into the CP, bind chaperone-like proteins (Hsm3, Nas2, Nas6, and Rpn14) implicated in RP assembly. We used NMR and other biophysical methods to reveal that S.
View Article and Find Full Text PDFSedimentation velocity analytical ultracentrifugation is a classical biophysical technique that is commonly used to analyze the size, shape, and interactions of biological macromolecules in solution. Fluorescence detection provides enhanced sensitivity and selectivity relative to the standard absorption and refractrometric detectors, but data acquisition is more complex and can be subject to interference from several photophysical effects. Here, we describe methods to configure sedimentation velocity measurements using fluorescence detection and evaluate the performance of the fluorescence optical system.
View Article and Find Full Text PDFOne of the most exciting recent developments in RNA biology has been the discovery of small non-coding RNAs that affect gene expression through the RNA interference (RNAi) mechanism. Two major classes of RNAs involved in RNAi are small interfering RNA (siRNA) and microRNA (miRNA). Dicer, an RNase III enzyme, plays a central role in the RNAi pathway by cleaving precursors of both of these classes of RNAs to form mature siRNAs and miRNAs, which are then loaded into the RNA-induced silencing complex (RISC).
View Article and Find Full Text PDFProtein kinase R (PKR) is an interferon-induced kinase that plays a pivotal role in the innate immunity pathway. PKR is activated to undergo autophosphorylation upon binding to double-stranded RNAs or RNAs that contain duplex regions. Activated PKR phosphorylates the α subunit of eukaryotic initiation factor 2, thereby inhibiting protein synthesis.
View Article and Find Full Text PDFDegradation by the proteasome typically requires substrate ubiquitination. Two ubiquitin receptors exist in the proteasome, S5a/Rpn10 and Rpn13. Whereas Rpn13 has only one ubiquitin-binding surface, S5a binds ubiquitin with two independent ubiquitin-interacting motifs (UIMs).
View Article and Find Full Text PDFMcm10 plays a key role in initiation and elongation of eukaryotic chromosomal DNA replication. As a first step to better understand the structure and function of vertebrate Mcm10, we have determined the structural architecture of Xenopus laevis Mcm10 (xMcm10) and characterized each domain biochemically. Limited proteolytic digestion of the full-length protein revealed N-terminal-, internal (ID)-, and C-terminal (CTD)-structured domains.
View Article and Find Full Text PDFMethods Cell Biol
December 2007
Analytical ultracentrifugation (AUC) is a versatile and powerful method for the quantitative analysis of macromolecules in solution. AUC has broad applications for the study of biomacromolecules in a wide range of solvents and over a wide range of solute concentrations. Three optical systems are available for the analytical ultracentrifuge (absorbance, interference, and fluorescence) that permit precise and selective observation of sedimentation in real time.
View Article and Find Full Text PDFThe signaling lymphocyte activation molecule (SLAM) family includes homophilic and heterophilic receptors that modulate both adaptive and innate immune responses. These receptors share a common ectodomain organization: a membrane-proximal immunoglobulin constant domain and a membrane-distal immunoglobulin variable domain that is responsible for ligand recognition. CD84 is a homophilic family member that enhances IFN-gamma secretion in activated T cells.
View Article and Find Full Text PDFUbiquitin receptors connect substrate ubiquitylation to proteasomal degradation. HHR23a binds proteasome subunit 5a (S5a) through a surface that also binds ubiquitin. We report that UIM2 of S5a binds preferentially to hHR23a over polyubiquitin, and we provide a model for the ternary complex that we expect represents one of the mechanisms used by the proteasome to capture ubiquitylated substrates.
View Article and Find Full Text PDFThe T cell immunoglobulin mucin (Tim) family of receptors regulates effector CD4(+) T cell functions and is implicated in autoimmune and allergic diseases. Tim-3 induces immunological tolerance, and engagement of the Tim-3 immunoglobulin variable (IgV) domain by galectin-9 is important for appropriate termination of T helper 1-immune responses. The 2 A crystal structure of the Tim-3 IgV domain demonstrated that four cysteines, which are invariant within the Tim family, form two noncanonical disulfide bonds, resulting in a surface not present in other immunoglobulin superfamily members.
View Article and Find Full Text PDFThe signaling lymphocytic activation molecule (SLAM) family includes homophilic and heterophilic receptors that regulate both innate and adaptive immunity. The ectodomains of most SLAM family members are composed of an N-terminal IgV domain and a C-terminal IgC2 domain. NK-T-B-antigen (NTB-A) is a homophilic receptor that stimulates cytotoxicity in natural killer (NK) cells, regulates bactericidal activities in neutrophils, and potentiates T helper 2 (Th2) responses.
View Article and Find Full Text PDF