Publications by authors named "Jeffrey Tomalka"

Poor penetration of many anti-tuberculosis (TB) antibiotics into the central nervous system (CNS) is thought to be a major driver of morbidity and mortality in TB meningitis (TBM). While the amount of a particular drug that crosses into the cerebrospinal fluid (CSF) varies from person to person, little is known about the host factors associated with interindividual differences in CSF concentrations of anti-TB drugs. In patients diagnosed with TBM from the country of Georgia (n=17), we investigate the association between CSF concentrations of anti-TB antibiotics and multiple host factors including serum drug concentrations and CSF concentrations of metabolites and cytokines.

View Article and Find Full Text PDF

Much of the high mortality in tuberculosis meningitis (TBM) is attributable to excessive inflammation, making it imperative to identify targets for host-directed therapies that reduce pathologic inflammation and mortality. In this study, we investigate how cytokines and metabolites in the cerebral spinal fluid (CSF) associate with TBM at diagnosis and during TBM treatment. At diagnosis, TBM patients (n = 17) demonstrate significant increases of cytokines and chemokines that promote inflammation and cell migration including IL-17A, IL-2, TNFα, IFNγ, and IL-1β versus asymptomatic controls without known central nervous system pathology (n = 20).

View Article and Find Full Text PDF
Article Synopsis
  • - The study re-analyzed genetic data from COVID-19 patients and found that genes related to eicosanoid synthesis were more active in patients with severe cases, particularly in goblet cells of the nasopharynx.
  • - Researchers compared lipid metabolites in infected vs. uninfected individuals and discovered higher levels of certain lipids like Arachidonic Acid (AA) and Eicosapentaenoic Acid (EPA) in COVID-19 patients, which correlated with the severity of the disease.
  • - The findings suggest a link between eicosanoid gene expression in the nasopharynx, increased serum inflammatory lipids, and the activation of DNA damage pathways in white blood cells, indicating a potential mechanism influencing the severity of COVID
View Article and Find Full Text PDF

The development of an effective vaccine to protect against HIV acquisition will be greatly bolstered by in-depth understanding of the innate and adaptive responses to vaccination. We report here that the efficacy of DNA/ALVAC/gp120/alum vaccines, based on V2-specific antibodies mediating apoptosis of infected cells (V2-ADCC), is complemented by efferocytosis, a cyclic AMP (cAMP)-dependent antiphlogistic engulfment of apoptotic cells by CD14 monocytes. Central to vaccine efficacy is the engagement of the CCL2/CCR2 axis and tolerogenic dendritic cells producing IL-10 (DC-10).

View Article and Find Full Text PDF

Innate immunity is an intrinsic baseline defense in cells, with its earliest origins in bacteria, and with key roles in defense against pathogens and in the activation of B and T cell responses. In mammals, the efficacy of innate immunity in initiating the cascades that lead to pathogen control results from the interplay of transcriptomic, epigenomic, and proteomic responses regulating immune activation and long-lived pathogen-specific memory responses. Recent studies suggest that intrinsic innate immunity is modulated by individual exposure histories - prior infections, vaccinations, and metabolites of microbial origin - and this promotes, or impairs, the development of efficacious innate immune responses.

View Article and Find Full Text PDF

Host genetic and environmental factors including age, biological sex, diet, geographical location, microbiome composition and metabolites converge to influence innate and adaptive immune responses to vaccines. Failure to understand and account for these factors when investigating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine efficacy may impair the development of the next generation of vaccines. Most studies aimed at identifying mechanisms of vaccine-mediated immune protection have focused on adaptive immune responses.

View Article and Find Full Text PDF

The SARS-CoV-2 pandemic has highlighted how an emergent disease can spread globally and how vaccines are once again the most important public health policy to combat infectious disease. Despite promising initial protection, the rise of new viral variants calls into question how effective current SARS-CoV-2 vaccines will be moving forward. Improving on vaccine platforms represents an opportunity to stay ahead of SARS-CoV-2 and keep the human population protected.

View Article and Find Full Text PDF

Development of effective human immunodeficiency virus 1 (HIV-1) vaccines requires synergy between innate and adaptive immune cells. Here we show that induction of the transcription factor CREB1 and its target genes by the recombinant canarypox vector ALVAC + Alum augments immunogenicity in non-human primates (NHPs) and predicts reduced HIV-1 acquisition in the RV144 trial. These target genes include those encoding cytokines/chemokines associated with heightened protection from simian immunodeficiency virus challenge in NHPs.

View Article and Find Full Text PDF

O-GlcNAcylation is a reversible post-translational protein modification that regulates fundamental cellular processes including immune responses and autoimmunity. Previously, we showed that hyperglycemia increases O-GlcNAcylation of the transcription factor, nuclear factor kappaB c-Rel at serine residue 350 and enhances the transcription of the c-Rel-dependent proautoimmune cytokines interleukin-2, interferon gamma and granulocyte macrophage colony stimulating factor in T cells. c-Rel also plays a critical role in the transcriptional regulation of forkhead box P3 (FOXP3)-the master transcription factor that governs development and function of Treg cells.

View Article and Find Full Text PDF

Background: Red cell distribution width (RDW), a measure of anisocytosis, is observed in chronic inflammation and is a prognostic marker in critically ill patients without COVID-19, but data in COVID-19 are limited.

Methods: Between March 12 and April 19, 2020, 282 individuals with confirmed COVID-19 and RDW available within 7 days prior to COVID-19 confirmation were evaluated. Individuals were grouped by quartiles of RDW.

View Article and Find Full Text PDF

To combat the diverse pathogens that infect humans, the immune system has evolved complex and diverse transcriptional signatures, which drive differential cellular and humoral responses. These signatures are induced by immune receptor sensing of pathogens and by cytokines produced at the earliest onset of infection. The specific nature of immune activation is as critical to pathogen clearance as the induction of an adaptive immune response.

View Article and Find Full Text PDF

Recognition of pathogens by Toll-like receptors (TLR) activate multiple signaling cascades and expression of genes tailored to mount a primary immune response, inflammation, cell survival and apoptosis. Although TLR-induced activation of pathways, such as nuclear factor kappaB (NF-κB) and mitogen-activated protein kinases (MAPK), has been well studied, molecular entities controlling quantitative regulation of these pathways during an immune response remain poorly defined. We identified Sam68 as a novel regulator of TLR-induced NF-κB and MAPK activation.

View Article and Find Full Text PDF

The nuclear factor-κB protein c-Rel plays a critical role in controlling autoimmunity. c-Rel-deficient mice are resistant to streptozotocin-induced diabetes, a drug-induced model of autoimmune diabetes. We generated c-Rel-deficient NOD mice to examine the role of c-Rel in the development of spontaneous autoimmune diabetes.

View Article and Find Full Text PDF

Intracellular inflammasome complexes regulate critical cytokine responses to infections. In this issue of Cell Host & Microbe,Karki et al. (2015) show that protection against the fungus Aspergillus requires the combined efforts of the NLRP3 and AIM2 inflammasomes and involves both caspase-1 and caspase-8.

View Article and Find Full Text PDF

Candida is an opportunistic fungal pathogen that colonizes the mucosal tract of humans. Pathogenic infection occurs in the presence of conditions causing perturbations to the commensal microbiota or host immunity. Early innate immune responses by the epithelium, including antimicrobial peptides (AMPs) and cytokines, are critical for protection against overgrowth.

View Article and Find Full Text PDF

Candida sp. are opportunistic fungal pathogens that colonize the skin and oral cavity and, when overgrown under permissive conditions, cause inflammation and disease. Previously, we identified a central role for the NLRP3 inflammasome in regulating IL-1β production and resistance to dissemination from oral infection with Candida albicans.

View Article and Find Full Text PDF

Candida albicans is an opportunistic fungal pathogen causing life-threatening mucosal and systemic infections in immunocompromised humans. Using a murine model of mucosal Candida infection, we investigated the role of the proinflammatory cytokine IL-1beta in host defense to Candida albicans. We find that the synthesis, processing, and release of IL-1beta in response to Candida are tightly controlled and first require transcriptional induction, followed by a second signal leading to caspase-1-mediated cleavage of the pro-IL-1beta cytokine.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: