The electrocatalytic synthesis of multicarbon products from CO/CO feedstock represents a sustainable method for chemical production with a reduced carbon footprint. Traditional copper catalysts predominantly produce alkenes, but generating valuable and versatile C alcohols, especially high-energy-density C alcohols, has been challenging due to issues with selectivity, activity, and stability. Here, we present the construction of Ru-doped Cu nanowires that enhance the selectivity of -PrOH and C alcohols.
View Article and Find Full Text PDFThis work describes the application of Cu single-atom catalysts (SACs) for photocatalytic oxidative dehydrogenation of N-heterocyclic amines to the respective N-heteroaromatics through environmentally benign and sustainable pathways. The mesoporous graphitic carbon nitride (mpg-CN), prepared by the one-step pyrolysis method, possesses a lightweight material with a high surface area (95 m g) and an average pore diameter (3.6 nm).
View Article and Find Full Text PDFWe demonstrate that single-atom alloy catalysts can be made by exposing physical mixtures of monometallic supported Cu and Pd catalysts to vinyl acetate (VA) synthesis reaction conditions. This reaction induces the formation of mobile clusters of metal diacetate species that drive extensive metal nanoparticle restructuring, leading to atomic dispersion of the precious metal, smaller nanoparticle sizes than the parent catalysts, and high activity and selectivity for both VA synthesis and ethanol dehydrogenation reactions. This approach is scalable and appears to be generalizable to other alloy catalysts.
View Article and Find Full Text PDFThe genetic architecture of phenotypic traits can affect the mode and tempo of trait evolution. Human-altered environments can impose strong natural selection, where successful evolutionary adaptation requires swift and large phenotypic shifts. In these scenarios, theory predicts that adaptation is due to a few adaptive variants of large effect, but empirical studies that have revealed the genetic architecture of rapidly evolved phenotypes are rare, especially for populations inhabiting polluted environments.
View Article and Find Full Text PDFSolution-processed CuInSe films have generally relied on sulfide or sulfoselenide precursor films that, during the grain growth process, hamper the growth of thicker films and lead to the formation of a fine-grain layer. However, recent research has indicated that sulfur reduction in the precursor film modifies the grain growth mechanism and may enable the fabrication of thicker absorbers that are free of any fine-grain layer. In this work, we pursue direct solution deposition of sulfur-free CuInSe films from the molecular precursor approach.
View Article and Find Full Text PDFAndrogen receptor (AR) inhibition is standard of care for advanced prostate cancer (PC). However, efficacy is limited by progression to castration-resistant PC (CRPC), usually due to AR re-activation via mechanisms that include amplification and structural rearrangement. These two classes of alterations often co-occur in CRPC tumors, but it is unclear whether this reflects intercellular or intracellular heterogeneity of .
View Article and Find Full Text PDFPairs of species that exhibit broadly overlapping distributions, and multiple geographically isolated contact zones, provide opportunities to investigate the mechanisms of reproductive isolation. Such naturally replicated systems have demonstrated that hybridization rates can vary substantially among populations, raising important questions about the genetic basis of reproductive isolation. The topminnows, and , are reciprocally monophyletic, and co-occur in drainages throughout much of the central and southern United States.
View Article and Find Full Text PDFOlefin oligomerization by γ-Al O has recently been reported, and it was suggested that Lewis acid sites are catalytic. The goal of this study is to determine the number of active sites per gram of alumina to confirm that Lewis acid sites are indeed catalytic. Addition of an inorganic Sr oxide base resulted in a linear decrease in the propylene oligomerization conversion at loadings up to 0.
View Article and Find Full Text PDFThe genetic architecture of phenotypic traits can affect the mode and tempo of trait evolution. Human-altered environments can impose strong natural selection, where successful evolutionary adaptation requires swift and large phenotypic shifts. In these scenarios, theory predicts the influence of few adaptive variants of large effect, but empirical studies that have revealed the genetic architecture of rapidly evolved phenotypes are rare, especially for populations inhabiting polluted environments.
View Article and Find Full Text PDFSynchrotron spectroscopy and Density Functional Theory (DFT) are combined to develop a new descriptor for the stability of adsorbed chemical intermediates on metal alloy surfaces. This descriptor probes the separation of occupied and unoccupied d electron density in platinum and is related to shifts in Resonant Inelastic X-ray Scattering (RIXS) signals. Simulated and experimental spectroscopy are directly compared to show that the promoter metal identity controls the orbital shifts in platinum electronic structure.
View Article and Find Full Text PDFCotton textiles are ubiquitous in daily life and are also one of the primary mediums for transmitting viruses and bacteria. Conventional approaches to fabricating antiviral and antibacterial textiles generally load functional additives onto the surface of the fabric and/or their microfibres. However, such modifications are susceptible to deterioration after long-term use due to leaching of the additives.
View Article and Find Full Text PDFThe nuclear corepressors NCOR1 and NCOR2 interact with transcription factors involved in B cell development and potentially link these factors to alterations in chromatin structure and gene expression. Herein, we demonstrate that Ncor1/2 deletion limits B cell differentiation via impaired recombination, attenuates pre-BCR signaling and enhances STAT5-dependent transcription. Furthermore, NCOR1/2-deficient B cells exhibited derepression of EZH2-repressed gene modules, including the p53 pathway.
View Article and Find Full Text PDFIon exchange membranes are widely used to selectively transport ions in various electrochemical devices. Hydroxide exchange membranes (HEMs) are promising to couple with lower cost platinum-free electrocatalysts used in alkaline conditions, but are not stable enough in strong alkaline solutions. Herein, we present a Cu-crosslinked chitosan (chitosan-Cu) material as a stable and high-performance HEM.
View Article and Find Full Text PDFTailoring the structure of metal components and interaction with their anchored substrates is essential for improving the catalytic performance of supported metal catalysts; the ideal catalytic configuration, especially down to the range of atomic layers, clusters, and even single atoms, remains a subject under intensive study. Here, an Ir-on-MXene (Mo TiC T ) catalyst with controlled morphology changing from nanoparticles down to flattened atomic layers, and finally ultrathin layers and single atoms dispersed on MXene nanosheets at elevated temperature, is presented. The intermediate structure, consisting of mostly Ir atomic layers, shows the highest activity toward the hydrogen evolution reaction (HER) under industry-compatible alkaline conditions.
View Article and Find Full Text PDFOcean acidification is expected to degrade marine ecosystems, yet most studies focus on organismal-level impacts rather than ecological perturbations. Field studies are especially sparse, particularly ones examining shifts in direct and indirect consumer interactions. Here we address such connections within tidepool communities of rocky shores, focusing on a three-level food web involving the keystone sea star predator, , a common herbivorous snail, , and a macroalgal basal resource, .
View Article and Find Full Text PDFIndustrial low-temperature methane combustion catalyst Pd/AlO suffers from HO-induced deactivation. It is imperative to design Pd catalysts free from this deactivation and with high atomic efficiency. Using a small-pore zeolite SSZ-13 as support, herein we report well-defined Pd catalysts with dominant active species as finely dispersed Pd cations, uniform PdO particles embedded inside the zeolite framework, or PdO particles decorating the zeolite external surface.
View Article and Find Full Text PDFBi-Oxazoline (biOx) has emerged as an effective ligand framework for promoting nickel-catalyzed cross-coupling, cross-electrophile coupling, and photoredox-nickel dual catalytic reactions. This report fills the knowledge gap of the organometallic reactivity of (biOx)Ni complexes, including catalyst reduction, oxidative electrophile activation, radical capture, and reductive elimination. The biOx ligand displays no redox activity in (biOx)Ni(I) complexes, in contrast to other chelating imine and oxazoline ligands.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2021
Guerbet alcohols, a class of β-branched terminal alcohols, find widespread application because of their low melting points and excellent fluidity. Because of the limitations in the activity and selectivity of existing Guerbet catalysts, Guerbet alcohols are not currently produced via the Guerbet reaction but via hydroformylation of oil-derived alkenes followed by aldol condensation. In pursuit of a one-step synthesis of Guerbet alcohols from simple linear alcohol precursors, we show that MOF-derived RuCo alloys achieve over a million turnovers in the Guerbet reaction of 1-propanol, 1-butanol, and 1-pentanol.
View Article and Find Full Text PDFRational design of single atom catalyst is critical for efficient sustainable energy conversion. However, the atomic-level control of active sites is essential for electrocatalytic materials in alkaline electrolyte. Moreover, well-defined surface structures lead to in-depth understanding of catalytic mechanisms.
View Article and Find Full Text PDFStructural and chemical transformations of ultrathin oxide films on transition metals lie at the heart of many complex phenomena in heterogeneous catalysis, such as the strong metal-support interaction (SMSI). However, there is limited atomic-scale understanding of these transformations, especially for irreducible oxides such as ZnO. Here, by combining density functional theory calculations and surface science techniques, including scanning tunneling microscopy, X-ray photoelectron spectroscopy, high-resolution electron energy loss spectroscopy, and low-energy electron diffraction, we investigated the interfacial interaction of well-defined ultrathin ZnOH films on Pd(111) under varying gas-phase conditions [ultrahigh vacuum (UHV), 5 × 10 mbar of O, and a D/O mixture] to shed light on the SMSI effect of irreducible oxides.
View Article and Find Full Text PDFInverse-sandwich samarium and ytterbium biphenyl complexes were synthesized by the reduction of their trivalent halide precursors with potassium graphite in the presence of biphenyl. While the samarium complex had a similar structure as previously reported rare earth metal biphenyl complexes, with the two samarium ions bound to the same phenyl ring, the ytterbium counterpart adopted a different structure, with the two ytterbium ions bound to different phenyl rings. Upon the addition of crown ether to encapsulate the potassium ions, the inverse-sandwich samarium biphenyl structure remained intact; however, the ytterbium biphenyl structure fell apart with the concomitant formation of a divalent ytterbium crown ether complex and potassium biphenylide.
View Article and Find Full Text PDFAlloying is well-known to improve the dehydrogenation selectivity of pure metals, but there remains considerable debate about the structural and electronic features of alloy surfaces that give rise to this behavior. To provide molecular-level insights into these effects, a series of Pd intermetallic alloy catalysts with Zn, Ga, In, Fe and Mn promoter elements was synthesized, and the structures were determined using X-ray absorption spectroscopy (XAS) and synchrotron X-ray diffraction (XRD). The alloys all showed propane dehydrogenation turnover rates 5-8 times higher than monometallic Pd and selectivity to propylene of over 90%.
View Article and Find Full Text PDFIn heterogeneous catalysis, olefin oligomerization is typically performed on immobilized transition metal ions, such as Ni and Cr. Here we report that silica-supported, single site catalysts containing immobilized, main group Zn and Ga ion sites catalyze ethylene and propylene oligomerization to an equilibrium distribution of linear olefins with rates similar to that of Ni. The molecular weight distribution of products formed on Zn is similar to Ni, while Ga forms higher molecular weight olefins.
View Article and Find Full Text PDFSingle-atom catalysts (SACs) have aroused great attention due to their high atom efficiency and unprecedented catalytic properties. A remaining challenge is to anchor the single atoms individually on support materials via strong interactions. Herein, single atom Co sites have been developed on functionalized graphene by taking advantage of the strong interaction between Co ions and the nitrile group of cyanographene.
View Article and Find Full Text PDFWith increasing concerns for global warming, the solar-driven photocatalytic reduction of CO into chemical fuels like methanol is a propitious route to enrich energy supplies, with concomitant reduction of the abundant CO stockpiles. Herein, a novel single atom-confinement and a strategy are reported toward single ruthenium atoms dispersion over porous carbon nitride surface. Ruthenium single atom character is well confirmed by EXAFS absorption spectrometric analysis unveiling the cationic coordination environment for the single-atomic-site ruthenium center, that is formed by Ru-N/C intercalation in the first coordination shell, attaining synergism in N-Ru-N connection and interfacial carrier transfer.
View Article and Find Full Text PDF