Perturbations in activity and dosage of the UBE3A ubiquitin-ligase have been linked to Angelman syndrome and autism spectrum disorders. UBE3A was initially identified as the cellular protein hijacked by the human papillomavirus E6 protein to mediate the ubiquitylation of p53, a function critical to the oncogenic potential of these viruses. Although a number of substrates have been identified, the normal cellular functions and pathways affected by UBE3A are largely unknown.
View Article and Find Full Text PDFHERC2 is a large E3 ubiquitin ligase with multiple structural domains that has been implicated in an array of cellular processes. Mutations in HERC2 are linked to developmental delays and impairment caused by nervous system dysfunction, such as Angelman Syndrome and autism-spectrum disorders. However, HERC2 cellular activity and regulation remain poorly understood.
View Article and Find Full Text PDFThe E6AP ubiquitin ligase catalyzes the high-risk human papillomaviruses' E6-mediated ubiquitylation of p53, contributing to the neoplastic progression of cells infected by these viruses. Defects in the activity and the dosage of E6AP are linked to Angelman syndrome and to autism spectrum disorders, respectively, highlighting the need for precise control of the enzyme. With the exception of HERC2, which modulates the ubiquitin ligase activity of E6AP, little is known about the regulation or function of E6AP normally.
View Article and Find Full Text PDFBackground: The pFOXC retroplasmids are small, autonomously replicating DNA molecules found in mitochondria of certain strains of the filamentous fungus Fusarium oxysporum and are among the first linear genetic elements shown to replicate via reverse transcription. The plasmids have a unique clothespin structure that includes a 5'-linked protein and telomere-like terminal repeats, with pFOXC2 and pFOXC3 having iterative copies of a 5 bp sequence. The plasmids contain a single large open reading frame (ORF) encoding an active reverse transcriptase (RT).
View Article and Find Full Text PDF