Publications by authors named "Jeffrey T Buboltz"

We modified the original design for a rapid solvent exchange (RSE) device with the intent of making the RSE method (i) more efficient and (ii) easier to adopt and implement. Our modifications improved solvent-removal kinetics by a factor of 2, while reducing sample-prep time by a factor of 3. In this paper, we develop the kinetic model that informed the device revision and we address several RSE parameters that have not yet been discussed in the literature.

View Article and Find Full Text PDF

Two different metrics are used to assess Forster resonance energy transfer (FRET) between fluorophores in the steady state: (i) acceptor-quenching of donor fluorescence E (also known as transfer efficiency) and (ii) donor-excited acceptor fluorescence F(A) (Dex). While E is still more widely used, F(A) (Dex) has been gaining in popularity for practical reasons among experimentalists who study biomembranes. Here, for the special case of membrane-bound fluorophores, we present a substantial body of experimental evidence that justifies the use of simple Stern-Volmer expressions when modeling either FRET metric under dilute-probe conditions.

View Article and Find Full Text PDF

For some time now, we have been using a fluorescence resonance energy transfer (FRET)-based strategy to conduct high-resolution studies of phase behavior in ternary lipid-raft membrane mixtures. Our FRET experiments can be carried out on ordinary, polydisperse multilamellar vesicle suspensions, so we are able to prepare our samples according to a procedure that was designed specifically to guard against artifactual phase separation. In some respects (i.

View Article and Find Full Text PDF

An experimental strategy has been developed specifically for the study of composition-dependent phase behavior in multicomponent artificial membranes. The strategy is based on steady-state measurements of fluorescence resonance energy transfer between freely diffusing membrane probe populations, and it is well suited for the rapid generation of large data sets. Presented in this paper are the basic principles that guide the experiment's design, the derivation of an underlying mathematical model that serves to interpret the data, and experimental results that confirm the model's predictive power.

View Article and Find Full Text PDF

Phase diagrams of lipid mixtures can show several different regions of phase coexistence, which include liquid-disordered, liquid-ordered, and gel phases. Some phase regions are small, and some have sharp boundaries. The identity of the phases, their location in composition space, and the nature of the transitions between the phases are important for understanding the behavior of lipid mixtures.

View Article and Find Full Text PDF

A general strategy is proposed for determining the very low aqueous solubility limits of bilayer-forming phospholipids. The strategy exploits the inherent surface activity of phospholipids and has been termed EDSB, which stands for Equilibrium Distribution between Surface and Bulk phases. In this report, EDSB has been used to determine the critical bilayer concentration of dilauroylphosphatidylycholine (DLPC), a short-chain bilayer-forming phospholipid.

View Article and Find Full Text PDF