Publications by authors named "Jeffrey Sterling"

Glatiramer acetate (GA) is a complex heterogenous mixture of polypeptides with immunomodulatory activity approved for treatment of relapsing-remitting multiple sclerosis. GA is the first, and was until recently, the only member of the glatiramoids, a family of synthetic copolymer mixtures comprising the four amino acids, L-glutamic acid, L-alanine, L-lysine and L-tyrosine, in a defined molar ratio. Another glatiramoid, protiramer, was recently evaluated in preclinical studies and in two small Phase II clinical trials with relapsing-remitting multiple sclerosis patients.

View Article and Find Full Text PDF

Controlled inhibition of brain acetyl- and butyrylcholinesterases (AChE and BChE, respectively) and of monoamine oxidase-B (MAO-B) may slow neurodegeneration in Alzheimer's and Parkinson's diseases. It was postulated that certain carbamate esters would inhibit AChE and BChE with the concomitant release in the brain of the OH-derivatives of rasagiline or selegiline that can serve as inhibitors of MAO-B and as antioxidants. We conducted a detailed in vitro kinetic study on two series of novel N-methyl, N-alkyl carbamates and compared them with rivastigmine, a known anti-Alzheimer drug.

View Article and Find Full Text PDF

Monoamine oxidases A and B (MAO A and B) catalyze the degradation of neurotransmitters and represent drug targets for the treatment of neurodegenerative disorders. Rasagiline is an irreversible, MAO B-selective inhibitor that has been approved as a novel anti-Parkinson's drug. In this study, we investigate the inhibition of recombinant human MAO A and MAO B by several rasagiline analogues.

View Article and Find Full Text PDF

Background: Although measurement of central corneal thickness (CCT) is increasingly becoming an important component of glaucoma risk analysis, significant controversy exists regarding the benefit of calculating a corrected intraocular pressure (IOP) value from measured IOP and CCT data.

Methods: Three hundred forty-four male subjects were identified from a VA eye clinic with one of the following clinical diagnoses: ocular hypertension (OHT), primary open-angle glaucoma (POAG), normal tension glaucoma (NTG), and normal tension glaucoma suspect (NTGS). Using one eye per subject, multivariate logistic regression and correlational analyses were performed to determine relationships between glaucomatous visual-field loss and several glaucoma risk factors, including adjusted IOP values.

View Article and Find Full Text PDF

Monoamine oxidase B (MAO B) is an outer mitochondrial membrane enzyme that catalyzes the oxidation of arylalkylamine neurotransmitters. The crystal structures of MAO B in complex with four of the N-propargylaminoindan class of MAO covalent inhibitors (rasagiline, N-propargyl-1(S)-aminoindan, 6-hydroxy-N-propargyl-1(R)-aminoindan, and N-methyl-N-propargyl-1(R)-aminoindan) have been determined at a resolution of better than 2.1 A.

View Article and Find Full Text PDF

The inactivation of purified human recombinant monoamine oxidases (MAO) A and B by rasagiline [N-propargyl-1(R)-aminoindan] and four of its analogues [N-propargyl-1(S)-aminoindan (S-PAI), 6-hydroxy-N-propargyl-1(R)-aminoindan (R-HPAI), N-methyl-N-propargyl-1(R)-aminoindan (R-MPAI), and 6-(N-methyl-N-ethyl carbamoyloxy)-N-propargyl-1(R)-aminoindan (R-CPAI)] has been investigated. All compounds tested, with the exception of R-CPAI, form stoichiometric N(5) flavocyanine adducts with the FAD moiety of either enzyme. No H(2)O(2) is produced during either MAO A or MAO B inactivation, which demonstrates that covalent addition occurs in a single turnover.

View Article and Find Full Text PDF

Carbamate derivatives of N-propargylaminoindans (Series I) and N-propargylphenethylamines (Series II) were synthesized via multistep procedures from the corresponding hydroxy precursors. The respective rasagiline- and selegiline-related series were designed to combine inhibitory activities of both acetylcholine esterase (AChE) and monoamine oxidase (MAO) by virtue of their carbamoyl and propargylamine pharmacophores. Each compound was tested for these activities in vitro in order to find molecules with similar potencies against each enzyme.

View Article and Find Full Text PDF