Publications by authors named "Jeffrey Seely"

Primate motor cortex projects to spinal interneurons and motoneurons, suggesting that motor cortex activity may be dominated by muscle-like commands. Observations during reaching lend support to this view, but evidence remains ambiguous and much debated. To provide a different perspective, we employed a novel behavioral paradigm that facilitates comparison between time-evolving neural and muscle activity.

View Article and Find Full Text PDF

Blocking motor cortical output with lesions or pharmacological inactivation has identified movements that require motor cortex. Yet, when and how motor cortex influences muscle activity during movement execution remains unresolved. We addressed this ambiguity using measurement and perturbation of motor cortical activity together with electromyography in mice during two forelimb movements that differ in their requirement for cortical involvement.

View Article and Find Full Text PDF

Cortical firing rates frequently display elaborate and heterogeneous temporal structure. One often wishes to compute quantitative summaries of such structure-a basic example is the frequency spectrum-and compare with model-based predictions. The advent of large-scale population recordings affords the opportunity to do so in new ways, with the hope of distinguishing between potential explanations for why responses vary with time.

View Article and Find Full Text PDF

Neural activity in monkey motor cortex (M1) and dorsal premotor cortex (PMd) can reflect a chosen movement well before that movement begins. The pattern of neural activity then changes profoundly just before movement onset. We considered the prediction, derived from formal considerations, that the transition from preparation to movement might be accompanied by a large overall change in the neural state that reflects when movement is made rather than which movement is made.

View Article and Find Full Text PDF

Binocular rivalry is a phenomenon that occurs when a different image is presented to each eye. The observer generally perceives just one image at a time, with perceptual switches occurring every few seconds. A natural assumption is that this perceptual mutual exclusivity is achieved via mutual inhibition between populations of neurons that encode for either percept.

View Article and Find Full Text PDF

We report on a theoretical study showing that the leak conductance density, G{L} , in the squid giant axon appears to be optimal for the action potential firing frequency. More precisely, the standard assumption that the leak current is composed of chloride ions leads to the result that the experimental value for G{L} is very close to the optimal value in the Hodgkin-Huxley model, which minimizes the absolute refractory period of the action potential, thereby maximizing the maximum firing frequency under stimulation by sharp, brief input current spikes to one end of the axon. The measured value of G{L} also appears to be close to optimal for the frequency of repetitive firing caused by a constant current input to one end of the axon, especially when temperature variations are taken into account.

View Article and Find Full Text PDF