The integral membrane protease ZMPSTE24 plays an important role in the lamin A maturation pathway. ZMPSTE24 is the only known enzyme to cleave the last 15 residues from the C-terminus of prelamin A, including a farnesylated and carboxyl methylated cysteine. Mutations in ZMPSTE24 lead to progeroid diseases with abnormal prelamin A accumulation in the nucleus.
View Article and Find Full Text PDFTranslation of therapeutic vaccines for addiction, cancer, or other chronic noncommunicable diseases has been slow because only a small subset of immunized subjects achieved effective Ab levels. We hypothesize that individual variability in the number of naive and early-activated hapten-specific B cells determines postvaccination serum Ab levels and vaccine efficacy. Using a model vaccine against the highly abused prescription opioid oxycodone, the polyclonal B cell population specific for an oxycodone-based hapten (6OXY) was analyzed by flow cytometry paired with Ag-based magnetic enrichment.
View Article and Find Full Text PDFVaccination against the highly abused prescription opioid oxycodone has shown pre-clinical efficacy for blocking oxycodone effects. The current study further evaluated a candidate vaccine composed of oxycodone derivatized at the C6 position (6OXY) conjugated to the native keyhole limpet hemocyanin (nKLH) carrier protein. To provide an oxycodone vaccine formulation suitable for human studies, we studied the effect of alternative carriers and adjuvants on the generation of oxycodone-specific serum antibody and B cell responses, and the effect of immunization on oxycodone distribution and oxycodone-induced antinociception in mice and rats.
View Article and Find Full Text PDFPhotoaffinity labeling is a useful technique employed to identify protein-ligand and protein-protein noncovalent interactions. Photolabeling experiments have been particularly informative for probing membrane-bound proteins where structural information is difficult to obtain. The most widely used classes of photoactive functionalities include aryl azides, diazocarbonyls, diazirines, and benzophenones.
View Article and Find Full Text PDFRas family small GTPases localize at the plasma membrane, where they can activate oncogenic signaling pathways. Understanding the mechanisms that promote membrane localization of GTPases will aid development of new therapies to inhibit oncogenic signaling. We previously reported that SmgGDS splice variants promote prenylation and trafficking of GTPases containing a C-terminal polybasic region and demonstrated that SmgGDS-607 interacts with nonprenylated GTPases, whereas SmgGDS-558 interacts with prenylated GTPases in cells.
View Article and Find Full Text PDFFarnesyl diphosphate (FPP) is an important metabolic intermediate in the biosynthesis of a variety of molecules including sesquiterpenes and the side chains of a number of cofactors. FPP is also the source of isoprenoid side chains found attached to proteins. Enzymes that employ FPP as a substrate are of interest because they are involved in the semisynthesis of drugs as well as targets for drug design.
View Article and Find Full Text PDFIsoprenylcysteine carboxyl methyltransferases (Icmts) are a class of integral membrane protein methyltransferases localized to the endoplasmic reticulum (ER) membrane in eukaryotes. The Icmts from human (hIcmt) and Saccharomyces cerevisiae (Ste14p) catalyze the α-carboxyl methyl esterification step in the post-translational processing of CaaX proteins, including the yeast a-factor mating pheromones and both human and yeast Ras proteins. Herein, we evaluated synthetic analogs of two well-characterized Icmt substrates, N-acetyl-S-farnesyl-L-cysteine (AFC) and the yeast a-factor peptide mating pheromone, that contain photoactive benzophenone moieties in either the lipid or peptide portion of the molecule.
View Article and Find Full Text PDF