Stat Methods Med Res
November 2022
Survival data with time-varying covariates are common in practice. If relevant, they can improve on the estimation of a survival function. However, the traditional survival forests-conditional inference forest, relative risk forest and random survival forest-have accommodated only time-invariant covariates.
View Article and Find Full Text PDFStat Methods Med Res
April 2022
In this paper, we propose a semiparametric, tree-based joint latent class model for the joint behavior of longitudinal and time-to-event data. Existing joint latent class approaches are parametric and can suffer from high computational cost. The most common parametric approach, the joint latent class model, further restricts analysis to using time-invariant covariates in modeling survival risks and latent class memberships.
View Article and Find Full Text PDFInterval-censored data analysis is important in biomedical statistics for any type of time-to-event response where the time of response is not known exactly, but rather only known to occur between two assessment times. Many clinical trials and longitudinal studies generate interval-censored data; one common example occurs in medical studies that entail periodic follow-up. In this article, we propose a survival forest method for interval-censored data based on the conditional inference framework.
View Article and Find Full Text PDFInterval-censored data, in which the event time is only known to lie in some time interval, arise commonly in practice, for example, in a medical study in which patients visit clinics or hospitals at prescheduled times and the events of interest occur between visits. Such data are appropriately analyzed using methods that account for this uncertainty in event time measurement. In this paper, we propose a survival tree method for interval-censored data based on the conditional inference framework.
View Article and Find Full Text PDFTree methods (recursive partitioning) are a popular class of nonparametric methods for analyzing data. One extension of the basic tree methodology is the survival tree, which applies recursive partitioning to censored survival data. There are several existing survival tree methods in the literature, which are mainly designed for right-censored data.
View Article and Find Full Text PDFIncident data about disruptions to the electric power grid provide useful information that can be used as inputs into risk management policies in the energy sector for disruptions from a variety of origins, including terrorist attacks. This article uses data from the Disturbance Analysis Working Group (DAWG) database, which is maintained by the North American Electric Reliability Council (NERC), to look at incidents over time in the United States and Canada for the period 1990-2004. Negative binomial regression, logistic regression, and weighted least squares regression are used to gain a better understanding of how these disturbances varied over time and by season during this period, and to analyze how characteristics such as number of customers lost and outage duration are related to different characteristics of the outages.
View Article and Find Full Text PDF