Skeletal loading enhances cortical and trabecular bone properties. How long these benefits last after loading cessation remains an unresolved, clinically relevant question. This study investigated long-term maintenance of loading-induced cortical and trabecular bone benefits in female C57BL/6 mice and the influence of a surgically induced menopause on the maintenance.
View Article and Find Full Text PDFExercise that mechanically loads the skeleton is advocated when young to enhance lifelong bone health. Whether the skeletal benefits of elevated loading when young persist into adulthood and after menopause are important questions. This study investigated the influence of a surgically induced menopause in female Sprague-Dawley rats on the lifelong maintenance of the cortical bone benefits of skeletal loading when young.
View Article and Find Full Text PDFBackground: The purpose of this study was to investigate whether uphill treadmill running in rats created histopathological changes within the Achilles tendon consistent with Achilles tendinosis in humans.
Methods: Twenty-six mature rats selectively bred for high-capacity running were divided into run and cage control groups. Run group rats ran on a treadmill at a 15° incline for a maximum duration of 1 hr/d, 5 d/wk for 9 weeks at increasing speeds, while rats in the cage control group maintained normal cage activity.
Intramuscular injection of botulinum toxin (botox) into rodent hindlimbs has developed as a useful model for exploring muscle-bone interactions. Botox-induced muscle inhibition rapidly induces muscle atrophy and subsequent bone loss, with the latter hypothesized to result from reduced muscular loading of the skeleton. However, botox-induced muscle inhibition also reduces gravitational loading (as evident by reduced ground reaction forces during gait) which may account for its negative skeletal effects.
View Article and Find Full Text PDF