Unlabelled: Salmonella specifically localize to malignant tumors in vivo, a trait potentially exploitable as a delivery system for cancer therapeutics. To characterize mechanisms and genetic responses of Salmonella during interaction with living neoplastic cells, we custom-designed a promoterless transposon reporter containing bacterial luciferase. Analysis of a library containing 7,400 independent Salmonella transposon insertion mutants in coculture with melanoma or colon carcinoma cells identified five bacterial genes specifically activated by cancer cells: adiY, yohJ, STM1787, STM1791, and STM1793.
View Article and Find Full Text PDFSalmonella Typhimurium is a common cause of gastroenteritis in humans and also localizes to neoplastic tumors in animals. Invasion of specific eukaryotic cells is a key mechanism of Salmonella interactions with host tissues. Early stages of gastrointestinal cell invasion are mediated by a Salmonella type III secretion system, powered by the adenosine triphosphatase invC.
View Article and Find Full Text PDFThe type III secretion system involved in Salmonella enterica serovar Typhimurium invasion of host cells has been disrupted using inducibly expressed oligonucleotide external guide sequences (EGSs) complementary to invB or invC mRNA. These EGSs direct single site cleavage in these mRNAs by endogenous RNase P, and their expression in Salmonella results in invC mRNA and InvC protein depletion, decreased type III secretion and interference with host cell invasion. Comparison of these effects with those from studies of Salmonella invB and invC mutants suggests that invB EGSs have polar effects on invC mRNA.
View Article and Find Full Text PDF