Based on observations of markers for DNA lesions, such as phosphorylated histone H2AX (γH2AX) and open DNA ends, it has been suggested that post-meiotic DNA double-strand breaks (PM-DSBs) enable chromatin remodeling during animal spermiogenesis. However, the existence of PM-DSBs is unconfirmed, and the mechanism responsible for their formation is unclear. Here, we report the first direct observation of programmed PM-DSBs via the electrophoretic separation of DSB-generated DNA fragments in the ciliate .
View Article and Find Full Text PDFCondensin is a central regulator of mitotic genome structure with mutants showing poorly condensed chromosomes and profound segregation defects. Here, we identify NCT, a complex comprising the Nrc1 BET-family tandem bromodomain protein (SPAC631.02), casein kinase II (CKII), and several TAFs, as a regulator of condensin function.
View Article and Find Full Text PDFUnlabelled: How the eukaryotic cell specifies distinct chromatin domains is a central problem in molecular biology. The ciliate protozoan Tetrahymena thermophila features a separation of structurally and functionally distinct germ-line and somatic chromatin into two distinct nuclei, the micronucleus (MIC) and macronucleus (MAC) respectively. To address questions about how distinct chromatin states are assembled in the MAC and MIC, we have initiated studies to define protein-protein interactions for T.
View Article and Find Full Text PDFRtt109 is a fungal histone acetyltransferase (HAT) that catalyzes histone H3 acetylation functionally associated with chromatin assembly. Rtt109-mediated H3 acetylation involves two histone chaperones, Asf1 and Vps75. In vivo, Rtt109 requires both chaperones for histone H3 lysine 9 acetylation (H3K9ac) but only Asf1 for full H3K56ac.
View Article and Find Full Text PDFBackground: Genome-wide expression data of gene microarrays can be used to infer gene networks. At a cellular level, a gene network provides a picture of the modules in which genes are densely connected, and of the hub genes, which are highly connected with other genes. A gene network is useful to identify the genes involved in the same pathway, in a protein complex or that are co-regulated.
View Article and Find Full Text PDFWe used a reverse genetic approach to identify three members of the SNF2 superfamily of chromatin remodeling genes in the ciliated protozoan Tetrahymena thermophila in order to investigate possible functions of ATP-dependent chromatin remodeling factors in growth and nuclear development. Comparative sequence analysis of the gene product of the Tetrahymena brahma-related gene (TtBRG1) indicates it is a member of the SNF2/BRM subgroup of the SNF2 superfamily. Northern analysis suggests that TtBRG1 has roles in growth and nuclear development in Tetrahymena.
View Article and Find Full Text PDFExtensive programmed DNA rearrangements occur during the development of the somatic macronucleus from the germ line micronucleus in the sexual cycle of the ciliated protozoan Tetrahymena thermophila. Using an in vivo processing assay, we analyzed the role of micronucleus-limited DNA during the programmed deletion of mse2.9, an internal eliminated sequence (IES).
View Article and Find Full Text PDFThe ciliated protozoan Tetrahymena thermophila undergoes extensive programmed DNA rearrangements during the development of a somatic macronucleus from the germ line micronucleus in its sexual cycle. To investigate the relationship between programmed DNA rearrangements and transposable elements, we identified several members of a family of non-long terminal repeat (LTR) retrotransposons (retroposons) in T. thermophila, the first characterized in the ciliated protozoa.
View Article and Find Full Text PDFTo assess the utility of expressed sequence tag (EST) sequencing as a method of gene discovery in the ciliated protozoan Tetrahymena thermophila, we have sequenced either the 5' or 3' ends of 157 clones chosen at random from two cDNA libraries constructed from the mRNA of vegetatively growing cultures. Of 116 total non-redundant clones, 8.6% represented genes previously cloned in Tetrahymena.
View Article and Find Full Text PDF