Publications by authors named "Jeffrey Rumschlag"

Autism Spectrum Disorders (ASD) encompass a wide array of debilitating symptoms, including severe sensory deficits and abnormal language development. Sensory deficits early in development may lead to broader symptomatology in adolescents and adults. The mechanistic links between ASD risk genes, sensory processing and language impairment are unclear.

View Article and Find Full Text PDF

Background: Autism spectrum disorder (ASD) is currently diagnosed in approximately 1 in 44 children in the United States, based on a wide array of symptoms, including sensory dysfunction and abnormal language development. Boys are diagnosed ~ 3.8 times more frequently than girls.

View Article and Find Full Text PDF

Fragile X Syndrome (FXS) is a leading known genetic cause of intellectual disability with symptoms that include increased anxiety and social and sensory processing deficits. Recent electroencephalographic (EEG) studies in humans with FXS have identified neural oscillation deficits that include increased resting state gamma power, increased amplitude of auditory evoked potentials, and reduced phase locking of sound-evoked gamma oscillations. Similar EEG phenotypes are present in mouse models of FXS, but very little is known about the development of such abnormal responses.

View Article and Find Full Text PDF

Background: Heterozygous mutations or deletions of cause a neurodevelopmental disorder termed MEF2C haploinsufficiency syndrome (MCHS), characterized by autism spectrum disorder and neurological symptoms. In mice, global heterozygosity has produced multiple MCHS-like phenotypes. MEF2C is highly expressed in multiple cell types of the developing brain, including GABAergic (gamma-aminobutyric acidergic) inhibitory neurons, but the influence of MEF2C hypofunction in GABAergic neurons on MCHS-like phenotypes remains unclear.

View Article and Find Full Text PDF

Sensorineural hearing loss is associated with dysfunction of cochlear cells. Although immune cells play a critical role in maintaining the inner ear microenvironment, the precise immune-related molecular mechanisms underlying the pathophysiology of hearing loss remain unclear. The complement cascade contributes to the regulation of immune cell activity.

View Article and Find Full Text PDF

Background: Autism spectrum disorders (ASD) encompass a wide array of debilitating symptoms, including sensory dysfunction and delayed language development. Auditory temporal processing is crucial for speech perception and language development. Abnormal development of temporal processing may account for the language impairments associated with ASD.

View Article and Find Full Text PDF

Age-related hearing loss, or presbyacusis, is a common degenerative disorder affecting communication and quality of life for millions of older adults. Multiple pathophysiologic manifestations, along with many cellular and molecular alterations, have been linked to presbyacusis; however, the initial events and causal factors have not been clearly established. Comparisons of the transcriptome in the lateral wall (LW) with other cochlear regions in a mouse model (of both sexes) of "normal" age-related hearing loss revealed that early pathophysiological alterations in the stria vascularis (SV) are associated with increased macrophage activation and a molecular signature indicative of inflammaging, a common form of immune dysfunction.

View Article and Find Full Text PDF

There is great interest in developing non-invasive approaches for studying cortical plasticity in humans. High-frequency presentation of auditory and visual stimuli, or sensory tetanisation, can induce long-term-potentiation-like (LTP-like) changes in cortical activity. However, contrasting effects across studies suggest that sensory tetanisation may be unreliable.

View Article and Find Full Text PDF
Article Synopsis
  • Dysfunction in the peripheral auditory nerve (AN) can lead to abnormal processing in the central auditory system, which is linked to heightened sound sensitivity often seen in autism spectrum disorder (ASD).
  • The MEF2C transcription factor is crucial for auditory development, and its mutations can lead to a haploinsufficiency syndrome associated with ASD and related cognitive deficits.
  • Research shows that a mouse model with MEF2C deficits exhibits auditory nerve impairments, highlighting cellular changes and inflammation that may contribute to both auditory dysfunction and ASD symptoms.
View Article and Find Full Text PDF

Neural oscillations at specific frequency bands are associated with cognitive functions and can identify abnormalities in cortical dynamics. In this study, we analyzed EEG signals recorded from auditory and frontal cortex of awake mice across young, middle and old ages, and found multiple robust and novel age-related changes in cortical oscillations. Notably, resting, evoked, and induced gamma power diminished with age, with some changes observed even in the middle age groups.

View Article and Find Full Text PDF

Deficits in auditory nerve (AN) function for older adults reduce afferent input to the cortex. The extent to which the cortex in older adults adapts to this loss of afferent input and the mechanisms underlying this adaptation are not well understood. We took a neural systems approach measuring AN and cortical evoked responses within 50 older and 27 younger human adults (59 female) to estimate central gain or increased cortical activity despite reduced AN activity.

View Article and Find Full Text PDF

Aging is associated with auditory nerve (AN) functional deficits and decreased inhibition in the central auditory system, amplifying central responses in a process referred to here as central gain. Although central gain increases response amplitudes, central gain may not restore disrupted response timing. In this translational study, we measured responses putatively generated by the AN and auditory midbrain in younger and older mice and humans.

View Article and Find Full Text PDF

Age-related changes in auditory processing affect the quality of life of older adults with and without hearing loss. To distinguish between the effects of sensorineural hearing loss and aging on cortical processing, the main goal of the present study was to compare cortical responses using the same stimulus paradigms and recording conditions in two strains of mice (C57BL/6J and FVB) that differ in the degree of age-related hearing loss. Electroencephalogram (EEG) recordings were obtained from freely moving young and old mice using epidural screw electrodes.

View Article and Find Full Text PDF

The intricate connectivity patterns of neural circuits support a wide repertoire of communication processes and functional interactions. Here we systematically investigate how neural signaling is constrained by anatomical connectivity in the mesoscale (fruit fly) brain network. We use a spreading model that describes how local perturbations, such as external stimuli, trigger global signaling cascades that spread through the network.

View Article and Find Full Text PDF

In active sensing, animals make motor adjustments to match sensory inputs to specialized neural circuitry. Here, we describe an active sensing system for sound level processing. The pallid bat uses downward frequency-modulated (FM) sweeps as echolocation calls for general orientation and obstacle avoidance.

View Article and Find Full Text PDF