Integrating multi-omics data may help researchers understand the genetic underpinnings of complex traits and diseases. However, the best ways to integrate multi-omics data and use them to address pressing scientific questions remain a challenge. One important and topical problem is how to assess the aggregate effect of multiple genomic data types (e.
View Article and Find Full Text PDFMetabolites that mark aging are not fully known. We analyze 408 plasma metabolites in Long Life Family Study participants to characterize markers of age, aging, extreme longevity, and mortality. We identify 308 metabolites associated with age, 258 metabolites that change over time, 230 metabolites associated with extreme longevity, and 152 metabolites associated with mortality risk.
View Article and Find Full Text PDFClonal hematopoiesis of indeterminate potential (CHIP), whereby somatic mutations in hematopoietic stem cells confer a selective advantage and drive clonal expansion, not only correlates with age but also confers increased risk of morbidity and mortality. Here, we leverage genetically predicted traits to identify factors that determine CHIP clonal expansion rate. We used the passenger-approximated clonal expansion rate method to quantify the clonal expansion rate for 4,370 individuals in the National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) cohort and calculated polygenic risk scores for DNA methylation aging, inflammation-related measures and circulating protein levels.
View Article and Find Full Text PDFAlthough both short and long sleep duration are associated with elevated hypertension risk, our understanding of their interplay with biological pathways governing blood pressure remains limited. To address this, we carried out genome-wide cross-population gene-by-short-sleep and long-sleep duration interaction analyses for three blood pressure traits (systolic, diastolic, and pulse pressure) in 811,405 individuals from diverse population groups. We discover 22 novel gene-sleep duration interaction loci for blood pressure, mapped to genes involved in neurological, thyroidal, bone metabolism, and hematopoietic pathways.
View Article and Find Full Text PDFDysregulation of physiological processes may contribute to Alzheimer's disease (AD) development. We previously found that an increase in the level of physiological dysregulation (PD) in the aging body is associated with declining resilience and robustness to major diseases. Also, our genome-wide association study found that genes associated with the age-related increase in PD frequently represented pathways implicated in axon guidance and synaptic function, which in turn were linked to AD and related traits (e.
View Article and Find Full Text PDFMutations in a diverse set of driver genes increase the fitness of haematopoietic stem cells (HSCs), leading to clonal haematopoiesis. These lesions are precursors for blood cancers, but the basis of their fitness advantage remains largely unknown, partly owing to a paucity of large cohorts in which the clonal expansion rate has been assessed by longitudinal sampling. Here, to circumvent this limitation, we developed a method to infer the expansion rate from data from a single time point.
View Article and Find Full Text PDFMotivation: The amount of genomic data is increasing exponentially. Using many genotyped and phenotyped individuals for genomic prediction is appealing yet challenging.
Results: We present SLEMM (short for Stochastic-Lanczos-Expedited Mixed Models), a new software tool, to address the computational challenge.
Background: The availability of whole-genome sequencing data in large studies has enabled the assessment of coding and noncoding variants across the allele frequency spectrum for their associations with blood pressure.
Methods: We conducted a multiancestry whole-genome sequencing analysis of blood pressure among 51 456 Trans-Omics for Precision Medicine and Centers for Common Disease Genomics program participants (stage-1). Stage-2 analyses leveraged array data from UK Biobank (N=383 145), Million Veteran Program (N=318 891), and Reasons for Geographic and Racial Differences in Stroke (N=10 643) participants, along with whole-exome sequencing data from UK Biobank (N=199 631) participants.