Publications by authors named "Jeffrey R Bender"

Tissue resident macrophages are largely of embryonic (fetal liver) origin and long-lived, while bone marrow-derived macrophages (BMDM) are recruited following an acute perturbation, such as hypoxia in the setting of myocardial ischemia. Prior transcriptome analyses identified BMDM and fetal liver-derived macrophage (FLDM) differences at the RNA expression level. Posttranscriptional regulation determining mRNA stability and translation rate may override transcriptional signals in response to hypoxia.

View Article and Find Full Text PDF

In cardiovascular research, sex and gender have not typically been considered in research design and reporting until recently. This has resulted in clinical research findings from which not only all women, but also gender-diverse individuals have been excluded. The resulting dearth of data has led to a lack of sex- and gender-specific clinical guidelines and raises serious questions about evidence-based care.

View Article and Find Full Text PDF

Polycystic ovary syndrome (PCOS) is associated with endothelial dysfunction; whether this is attributable to comorbid hyperandrogenism and/or obesity remains to be established. Therefore, we ) compared endothelial function between lean and overweight/obese (OW/OB) women with and without androgen excess (AE)-PCOS and ) examined androgens as potential modulators of endothelial function in these women. The flow-mediated dilation (FMD) test was applied in 14 women with AE-PCOS (lean: = 7; OW/OB: = 7) and 14 controls (CTRL; lean: = 7, OW/OB: = 7) at baseline (BSL) and following 7 days of ethinyl estradiol supplementation (EE; 30 µg/day) to assess the effect of a vasodilatory therapeutic on endothelial function; at each time point we assessed peak increases in diameter during reactive hyperemia (%FMD), shear rate, and low flow-mediated constriction (%LFMC).

View Article and Find Full Text PDF

A task force composed of American Heart Association (AHA) Research Committee members established processes to measure the performance of the AHA's research portfolio and evaluated key outcomes that are fundamental to the overall success of the program. This report reviews progress that the AHA research program has had in achieving its goals relevant to the research programs in the AHA's research portfolio from 2008 to 2017. Comprehensive performance metrics were identified to assess the impact of AHA funding on researchers' career progress and research outcomes.

View Article and Find Full Text PDF

Key Points: Polycystic ovary syndrome (PCOS) is a complex syndrome with cardiovascular risk factors, including obesity and insulin resistance. PCOS is also associated with high androgens, increases the risk of cardiovascular dysfunction in women. Due to the complexity of PCOS, had it has been challenging to isolate specific causes of the cardiovascular dysfunction.

View Article and Find Full Text PDF

Activation of the β2 integrin lymphocyte function-associated antigen-1 (LFA-1) in T cells induces stabilization of proinflammatory AU-rich element (ARE)-bearing mRNAs, by triggering the nuclear-to-cytoplasmic translocation of the mRNA-binding and -stabilizing protein HuR. However, the mechanism by which LFA-1 engagement controls HuR localization is not known. Here, we identify and characterize four key regulators of LFA-1-induced changes in HuR activity: the p38 pathway kinase MK2 and the constitutive nuclear proteins hnRNPs C, H1 and K.

View Article and Find Full Text PDF

Objective: The calcium composition of atherosclerotic plaque is thought to be associated with increased risk for cardiovascular events, but whether plaque calcium itself is predictive of worsening clinical outcomes remains highly controversial. Inflammation is likely a key mediator of vascular calcification, but immune signaling mechanisms that promote this process are minimally understood.

Approach And Results: Here, we identify Rac2 as a major inflammatory regulator of signaling that directs plaque osteogenesis.

View Article and Find Full Text PDF

What is the topic of this review? This review summarizes the beneficial actions of oestrogen on the vasculature, highlighting both molecular mechanisms and functional outcomes. What advances does it highlight? The net effect of oestrogen on the vascular health of women continues to be debated. Recent advances have provided strong evidence for the role of membrane-bound oestrogen receptors in the maintenance of normal endothelial function.

View Article and Find Full Text PDF
Menopause and the Heart.

Endocrinol Metab Clin North Am

September 2015

Cardiovascular disease is the leading cause of death in postmenopausal US women. The contribution of postmenopausal hormone replacement therapy to cardiovascular risk is one of the most controversial women's health topics. Strikingly discordant results, between observational and randomized clinical trials, have been reported.

View Article and Find Full Text PDF

Myeloid cells are important contributors to arteriogenesis, but their key molecular triggers and cellular effectors are largely unknown. We report, in inflammatory monocytes, that the combination of chemokine receptor (CCR2) and adhesion receptor (β2 integrin) engagement leads to an interaction between activated Rac2 and Myosin 9 (Myh9), the heavy chain of Myosin IIA, resulting in augmented vascular endothelial growth factor A (VEGF-A) expression and induction of arteriogenesis. In human monocytes, CCL2 stimulation coupled to ICAM-1 adhesion led to rapid nuclear-to-cytosolic translocation of the RNA-binding protein HuR.

View Article and Find Full Text PDF

Inflammatory cells acquire a polarized phenotype to migrate towards sites of infection or injury. A conserved polarity complex comprising PAR-3, PAR-6 and atypical protein kinase C (aPKC) relays extracellular polarizing cues to control cytoskeletal and signaling networks affecting morphological and functional polarization. However, there is no evidence that myeloid cells use PAR signaling to migrate vectorially in three-dimensional (3D) environments in vivo.

View Article and Find Full Text PDF

An ascending aortic aneurysm is a common and very much unwelcome diagnosis that has never been associated with anything positive. We believe, however, that there actually is a silver lining to this disease: aortic root and ascending aortic aneurysms actually protect against atherosclerosis. We have found that patients with ascending aneurysms have both decreased arterial calcification and carotid intima-media thickness, late and early indicators of atherosclerosis, respectively.

View Article and Find Full Text PDF

Endothelial dysfunction, including endothelial hyporesponsiveness to prototypical angiogenic growth factors and eNOS agonists, underlies vascular pathology in many dysmetabolic states. We investigated effects of a saturated free fatty acid, palmitic acid (PA), on endothelial cell responses to VEGF. PA-pretreated endothelial cells had markedly diminished Akt, eNOS, and ERK activation responses to VEGF, despite normal VEGFR2 phosphorylation.

View Article and Find Full Text PDF

Rapid, nongenomic vascular cell and tissue responses to estrogen have been demonstrated for more than a decade. Although the pendulum continues to swing, accumulating evidence, both clinical and pre-clinical, support favorable effects of ovarian steroid hormones in the vascular system. These effects are mediated both by classical steroid hormone receptor-mediated transcriptional modulation, and largely by endothelial plasma membrane-associated estrogen receptor (ER)α, which when engaged triggers a signaling cascade resulting in release of cardioprotective nitric oxide (NO).

View Article and Find Full Text PDF

Aberrant blood vessel formation contributes to a wide variety of pathologies, and factors that regulate angiogenesis are attractive therapeutic targets. Endothelial and smooth muscle cell-derived neuropilin-like protein (ESDN) is a neuropilin-related transmembrane protein expressed in ECs; however, its potential effect on VEGF responses remains undefined. Here, we generated global and EC-specific Esdn knockout mice and demonstrated that ESDN promotes VEGF-induced human and murine EC proliferation and migration.

View Article and Find Full Text PDF

Objective: Vascular endothelial growth factor (VEGF) signaling plays a key role in the pathogenesis of vascular remodeling, including graft arteriosclerosis. Graft arteriosclerosis is the major cause of late organ failure in cardiac transplantation. We used molecular near-infrared fluorescent imaging with an engineered Cy5.

View Article and Find Full Text PDF

HuR is a member of the Drosophila Elav protein family that binds mRNA degradation sequences and prevents RNase-mediated degradation. Such HuR-mediated mRNA stabilization, which is stimulated by integrin engagement and is controlled at the level of HuR nuclear export, is critically involved in T-cell cytokine production. However, HuR's role in macrophage soluble factor production, in particular in response to angiogenic stimuli, has not yet been established.

View Article and Find Full Text PDF

In addition to enhancing or repressing transcription, steroid hormone receptors rapidly transduce kinase activation signals. On ligand engagement, an N-terminus-truncated splice isoform of estrogen receptor (ER) α, ER46, triggers membrane-initiated signals, resulting in endothelial nitric oxide synthase (eNOS) activation and endothelial NO production. The orientation of ER46 at the plasma membrane is incompletely defined.

View Article and Find Full Text PDF

Background: Engagement of the β2 integrin, lymphocyte function-associated antigen-1 (LFA-1), results in stabilization of T cell mRNA transcripts containing AU-rich elements (AREs) by inducing rapid nuclear-to-cytosolic translocation of the RNA-stabilizing protein, HuR. However, little is known regarding integrin-induced signaling cascades that affect mRNA catabolism. This study examines the role of the GTPases, Rac 1 and Rac 2, and their downstream effectors, in the LFA-1-induced effects on mRNA.

View Article and Find Full Text PDF

Rationale: There are conflicting data on the effects of vascular endothelial growth factor (VEGF) in vascular remodeling. Furthermore, there are species-specific differences in leukocyte and vascular cell biology and little is known about the role of VEGF in remodeling of human arteries.

Objective: We sought to address the role of VEGF blockade on remodeling of human arteries in vivo.

View Article and Find Full Text PDF

Endothelial and smooth muscle cell-derived neuropilin-like protein (ESDN) is up-regulated in the neointima of remodeling arteries and modulates vascular smooth muscle cell (VSMC) growth. Platelet-derived growth factor (PDGF) is the prototypic growth factor for VSMCs and plays a key role in vascular remodeling. Here, we sought to further define ESDN function in primary human VSMCs.

View Article and Find Full Text PDF

Estrogen-induced rapid, membrane-initiated activation of numerous signal transduction cascades has been shown in animal, cellular and molecular vascular studies, which support the favorable effects of estrogen on vascular structure and function. These effects are mediated by distinct forms of estrogen receptor (ER) alpha. This includes estrogen-stimulated, rapid activation of endothelial nitric oxide synthase (eNOS), resulting in elaboration of the athero-protective, angiogenesis-promoting product nitric oxide (NO).

View Article and Find Full Text PDF

The definition of estrogen's actions has expanded from transcriptional regulation to the rapid, membrane-initiated activation of numerous signal transduction cascades. Multiple biological effects of estrogen have been shown in numerous animals, cellular and molecular studies, which support the favorable effects of estrogen on vascular structure, function, and cell signaling. Work from several laboratories has shown that these effects are mediated by distinct forms of estrogen receptor (ER) alpha.

View Article and Find Full Text PDF

Genetic programs promoting cell cycle progression, DNA repair, and survival are coordinately induced in developing T cells and require rapid turnover of effector molecules. As the COP9 signalosome (CSN) has been placed at the crossroads of these programs in lower organisms, we addressed its role by conditionally deleting CSN5/JAB1, its catalytic subunit, in developing thymocytes. CSN5/JAB1(del/del) thymocytes show defective S phase progression and massive apoptosis at the double-negative (DN) 4-double-positive (DP) transition stage, which is paralleled by altered turnover of selected CSN-controlled substrates, including p53, IkappaB-alpha, and beta-catenin.

View Article and Find Full Text PDF