Sex-ratio distorters based on X-chromosome shredding are more efficient than sterile male releases for population suppression. X-shredding is a form of sex distortion that skews spermatogenesis of XY males towards the preferential transmission of Y-bearing gametes, resulting in a higher fraction of sons than daughters. Strains harboring X-shredders on autosomes were first developed in the malaria mosquito , resulting in strong sex-ratio distortion.
View Article and Find Full Text PDFTransposable elements (TEs) represent a major portion of most eukaryotic genomes, yet little is known about their mutation rates or how their activity is shaped by other evolutionary forces. Here, we compare short- and long-term patterns of genome-wide mutation accumulation (MA) of TEs among 9 genotypes from three populations of Daphnia magna from across a latitudinal gradient. While the overall proportion of the genome comprised of TEs is highly similar among genotypes from Finland, Germany, and Israel, populations are distinguishable based on patterns of insertion site polymorphism.
View Article and Find Full Text PDFThe rapid evolution of repetitive DNA sequences, including satellite DNA, tandem duplications, and transposable elements, underlies phenotypic evolution and contributes to hybrid incompatibilities between species. However, repetitive genomic regions are fragmented and misassembled in most contemporary genome assemblies. We generated highly contiguous de novo reference genomes for the species complex (, , and ), which speciated ∼250,000 yr ago.
View Article and Find Full Text PDFThe explosion in population genomic data demands ever more complex modes of analysis, and increasingly, these analyses depend on sophisticated simulations. Recent advances in population genetic simulation have made it possible to simulate large and complex models, but specifying such models for a particular simulation engine remains a difficult and error-prone task. Computational genetics researchers currently re-implement simulation models independently, leading to inconsistency and duplication of effort.
View Article and Find Full Text PDFAccurately inferring the genome-wide landscape of recombination rates in natural populations is a central aim in genomics, as patterns of linkage influence everything from genetic mapping to understanding evolutionary history. Here, we describe recombination landscape estimation using recurrent neural networks (ReLERNN), a deep learning method for estimating a genome-wide recombination map that is accurate even with small numbers of pooled or individually sequenced genomes. Rather than use summaries of linkage disequilibrium as its input, ReLERNN takes columns from a genotype alignment, which are then modeled as a sequence across the genome using a recurrent neural network.
View Article and Find Full Text PDFSevere insect declines make headlines, but they are rarely based on systematic monitoring outside of Europe. We estimate the rate of change in total butterfly abundance and the population trends for 81 species using 21 years of systematic monitoring in Ohio, USA. Total abundance is declining at 2% per year, resulting in a cumulative 33% reduction in butterfly abundance.
View Article and Find Full Text PDFNatural populations often exist in spatially diverse environments and may experience variation in the strength and targets of natural selection across their ranges. Drosophila provides an excellent opportunity to study the effects of spatially varying selection in natural populations, as both Drosophila melanogaster and Drosophila simulans live across a wide range of environments in North America. Here, we characterize patterns of variation in transposable elements (TEs) from six populations of D.
View Article and Find Full Text PDFKnowing the rate at which transposable elements (TEs) insert and delete is critical for understanding their role in genome evolution. We estimated spontaneous rates of insertion and deletion for all known, active TE superfamilies present in a set of Drosophila melanogaster mutation-accumulation (MA) lines using whole genome sequence data. Our results demonstrate that TE insertions far outpace TE deletions in D.
View Article and Find Full Text PDFMitochondrial protein translation requires interactions between transfer RNAs encoded by the mitochondrial genome (mt-tRNAs) and mitochondrial aminoacyl tRNA synthetase proteins (mt-aaRS) encoded by the nuclear genome. It has been argued that animal mt-tRNAs have higher deleterious substitution rates relative to their nuclear-encoded counterparts, the cytoplasmic tRNAs (cyt-tRNAs). This dynamic predicts elevated rates of compensatory evolution of mt-aaRS that interact with mt-tRNAs, relative to aaRS that interact with cyt-tRNAs (cyt-aaRS).
View Article and Find Full Text PDFAdaptation to spatially varying environments has been studied for decades, but advances in sequencing technology are now enabling researchers to investigate the landscape of genetic variation underlying this adaptation genome wide. In this review we highlight some of the decades-long research on local adaptation in Drosophila melanogaster from well-studied clines in North America and Australia. We explore the evidence for parallel adaptation and identify commonalities in the genes responding to clinal selection across continents as well as discussing instances where patterns differ among clines.
View Article and Find Full Text PDFNative to Asia, the soft-skinned fruit pest Drosophila suzukii has recently invaded the United States and Europe. The eastern United States represents the most recent expansion of their range, and presents an opportunity to test alternative models of colonization history. Here, we investigate the genetic population structure of this invasive fruit fly, with a focus on the eastern United States.
View Article and Find Full Text PDF