Bermekimab is a human-derived recombinant monoclonal antibody that exhibits immunoregulatory activity by specifically blocking interleukin-1α activity. Four phase 2 studies evaluated efficacy and safety of bermekimab in patients with moderate-to-severe atopic dermatitis (AD). In addition, a novel human skin explant model was developed to assess bermekimab pharmacokinetics/pharmacodynamics and proteomic/transcriptomic effects.
View Article and Find Full Text PDFBackground: Histone modification H4K20me3 and its methyltransferase SUV420H2 have been implicated in suppression of tumorigenesis. The underlying mechanism is unclear, although H4K20me3 abundance increases during cellular senescence, a stable proliferation arrest and tumor suppressor process, triggered by diverse molecular cues, including activated oncogenes. Here, we investigate the function of H4K20me3 in senescence and tumor suppression.
View Article and Find Full Text PDFPurpose: Preclinical studies show that inhibition of aurora kinases in melanoma tumors induces senescence and reduces tumor growth, but does not cause tumor regression. Additional preclinical models are needed to identify agents that will synergize with aurora kinase inhibitors to induce tumor regression.
Experimental Design: We combined treatment with an aurora kinase A inhibitor, MLN8237, with agents that activate death receptors (Apo2L/TRAIL or death receptor 5 agonists) and monitored the ability of this treatment to induce tumor apoptosis and melanoma tumor regression using human cell lines and patient-derived xenograft (PDX) mouse models.
The validity of the identification and classification of human cancer using antibodies to detect biomarker proteins depends upon antibody specificity. Antibodies that bind to the tumour-suppressor protein p16INK4a are widely used for cancer diagnosis and research. In this study we examined the specificity of four commercially available anti-p16INK4a antibodies in four immunological applications.
View Article and Find Full Text PDFThe three basic cell types in the migrating slug of Dictyostelium discoideum show differential chemotactic response to cyclic AMP (cAMP) and differential sensitivity to suppression of the chemotaxis by ammonia.The values of these parameters indicate a progressive maturation of chemotactic properties during the transdifferentiation of slug cell types.We present a model that explains the localization of the three cell types within the slug based on these chemotactic differences and on the maturation of their chemotactic properties.
View Article and Find Full Text PDF