Herpes Simplex Virus 1 evades the host immune system by expressing a protein, ICP47, that binds to and inhibits the heterodimeric Transporter Associated with Antigen Processing (TAP). We screened a library of 1786 variants in TAP2, one of the components of the TAP heterodimer, and identified 39 variants that were resistant to inhibition by ICP47. Of these 39 variants, five were individually tested, and three (T257I, S274H, and T244R) were confirmed to be significantly resistant to inhibition by ICP47.
View Article and Find Full Text PDFDelineating functionally normal variants from functionally abnormal variants in tumor suppressor proteins is critical for cancer surveillance, prognosis, and treatment options. BRCA1 is a protein that has many variants of uncertain significance which are not yet classified as functionally normal or abnormal. In vitro functional assays can be used to identify the functional impact of a variant when the variant has not yet been categorized through clinical observation.
View Article and Find Full Text PDFSingle nucleotide variants are the most frequent type of sequence changes detected in the genome and these are frequently variants of uncertain significance (VUS). VUS are changes in DNA for which disease risk association is unknown. Thus, methods that classify the functional impact of a VUS can be used as evidence for variant interpretation.
View Article and Find Full Text PDFUnlabelled: Single nucleotide variants are the most frequent type of sequence changes detected in the genome and these are frequently variants of uncertain significance (VUS). VUS are changes in DNA for which disease risk association is unknown. Thus, methods that classify the functional impact of a VUS can be used as evidence for variant interpretation.
View Article and Find Full Text PDFTriple negative breast cancer (TNBC) represents approximately 10-15% of all breast cancers and has a poor outcome as it lacks a receptor target for therapy, and TNBC is frequently associated with a germline mutation of BRCA1. Poly (ADP-ribose) polymerase inhibitor (PARPi) drugs have demonstrated some effectiveness in treating BRCA1 or BRCA2 mutated breast and ovarian cancers but resistance to PARPi is common. Published results found that resistance to Olaparib, a PARPi, can be due to downregulation of EMI1 and the consequent upregulation of the RAD51 recombinase.
View Article and Find Full Text PDFThe BARD1 protein, which heterodimerizes with BRCA1, is encoded by a known breast cancer susceptibility gene. While several BARD1 variants have been identified as pathogenic, many more missense variants exist that do not occur frequently enough to assign a clinical risk. In this paper, whole exome sequencing of over 10,000 cancer samples from 33 cancer types identified from somatic mutations and loss of heterozygosity in tumors 76 potentially cancer-associated BARD1 missense and truncation variants.
View Article and Find Full Text PDFPARP inhibitor (PARPi) therapy targets BRCA1/2 mutant tumor cells, but acquired resistance limits its effectiveness. In this issue of Molecular Cell, Marzio et al. (2019) identify a novel mechanism of resistance to PARPi through regulation of RAD51 protein stability via an SCF ubiquitin ligase dependent on EMI1.
View Article and Find Full Text PDFLoss-of-function pathogenic variants in BRCA1 confer a predisposition to breast and ovarian cancer. Genetic testing for sequence changes in BRCA1 frequently reveals a missense variant for which the impact on cancer risk and on the molecular function of BRCA1 is unknown. Functional BRCA1 is required for the homology-directed repair (HDR) of double-strand DNA breaks, a critical activity for maintaining genome integrity and tumor suppression.
View Article and Find Full Text PDFMesodermal cells signal to neighboring epithelial cells to modulate their proliferation in both normal and disease states. We adapted a Caenorhabditis elegans organogenesis model to enable a genome-wide mesodermal-specific RNAi screen and discovered 39 factors in mesodermal cells that suppress the proliferation of adjacent Ras pathway-sensitized epithelial cells. These candidates encode components of protein complexes and signaling pathways that converge on the control of chromatin dynamics, cytoplasmic polyadenylation, and translation.
View Article and Find Full Text PDFProteasomal degradation of topoisomerase I (topoI) is one of the most remarkable cellular phenomena observed in response to camptothecin (CPT). Importantly, the rate of topoI degradation is linked to CPT resistance. Formation of the topoI-DNA-CPT cleavable complex inhibits DNA re-ligation resulting in DNA-double strand break (DSB).
View Article and Find Full Text PDFCancer cells require telomere maintenance to enable uncontrolled growth. Most often telomerase is activated, although a subset of human cancers are telomerase-negative and depend on recombination-based mechanisms known as ALT (Alternative Lengthening of Telomeres). ALT depends on proteins that are essential for homologous recombination, including BLM and the MRN complex, to extend telomeres.
View Article and Find Full Text PDFObjective: We analyzed histone deacetylase 10 (HDAC10) for function in the context of the DNA damage response in BRCA1-null ovarian cancer cells as well as evaluated the potential of general HDAC inhibitors in primary ovarian carcinoma cells. HDAC10 had previously been shown to be highly stimulatory to the process of homology directed repair in HeLa cells, and in this study we investigated whether HDAC10 could impact in vitro the response to anticancer therapies. We hypothesized that the loss of HDAC10 would sensitize cells to platinum therapy.
View Article and Find Full Text PDFBackground: Somatic mutations can be used as potential biomarkers for subtyping and predicting outcomes for cancer patients. However, cancer patients often carry many somatic mutations, which do not always concentrate on specific genomic loci, suggesting that the mutations may affect common pathways or gene interaction networks instead of common genes. The challenge is thus to identify the functional relationships among the mutations using multi-modal data.
View Article and Find Full Text PDFRan Binding Protein 9 (RanBP9, also known as RanBPM) is an evolutionary conserved scaffold protein present both in the nucleus and the cytoplasm of cells whose biological functions remain elusive. We show that active ATM phosphorylates RanBP9 on at least two different residues (S181 and S603). In response to IR, RanBP9 rapidly accumulates into the nucleus of lung cancer cells, but this nuclear accumulation is prevented by ATM inhibition.
View Article and Find Full Text PDFLarge-scale cancer sequencing data enable discovery of rare germline cancer susceptibility variants. Here we systematically analyse 4,034 cases from The Cancer Genome Atlas cancer cases representing 12 cancer types. We find that the frequency of rare germline truncations in 114 cancer-susceptibility-associated genes varies widely, from 4% (acute myeloid leukaemia (AML)) to 19% (ovarian cancer), with a notably high frequency of 11% in stomach cancer.
View Article and Find Full Text PDFDuring mitosis the chromatin undergoes dramatic architectural changes with the halting of the transcriptional processes and evacuation of nearly all transcription associated machinery from genes and promoters. Molecular bookmarking of genes during mitosis is a mechanism of faithfully transmitting cell-specific transcription patterns through cell division. We previously discovered chromatin ubiquitination at active promoters as a potential mitotic bookmark.
View Article and Find Full Text PDFWhen the small ubiquitin-like modifier (SUMO)-1 protein is localized on the genome, it is found on proteins bound to the promoters of the most highly active genes and on proteins bound to the DNA-encoding exons. Inhibition of the SUMO-1 modification leads to reductions in initiation of messenger RNA (mRNA) synthesis and splicing. In this review, we discuss what is known about the SUMOylation of factors involved in transcription initiation, pre-mRNA processing, and polyadenylation.
View Article and Find Full Text PDFGenes associated with hereditary breast and ovarian cancer (HBOC) are often sequenced in search of mutations that are predictive of susceptibility to these cancer types, but the sequence results are frequently ambiguous because of the detection of missense substitutions for which the clinical impact is unknown. The BARD1 protein is the heterodimeric partner of BRCA1 and is included on clinical gene panels for testing for susceptibility to HBOC. Like BRCA1, it is required for homology-directed DNA repair (HDR).
View Article and Find Full Text PDFInterpreting variants of uncertain significance (VUS) is a central challenge in medical genetics. One approach is to experimentally measure the functional consequences of VUS, but to date this approach has been post hoc and low throughput. Here we use massively parallel assays to measure the effects of nearly 2000 missense substitutions in the RING domain of BRCA1 on its E3 ubiquitin ligase activity and its binding to the BARD1 RING domain.
View Article and Find Full Text PDFEarly steps of gene expression are a composite of promoter recognition, promoter activation, RNA synthesis and RNA processing, and it is known that SUMOylation, a post-translational modification, is involved in transcription regulation. We previously found that SUMO-1 marks chromatin at the proximal promoter regions of some of the most active housekeeping genes during interphase in human cells, but the SUMOylated targets on the chromatin remained unclear. In this study, we found that SUMO-1 marks the promoters of ribosomal protein genes via modification of the Scaffold Associated Factor B (SAFB) protein, and the SUMOylated SAFB stimulated both the binding of RNA polymerase to promoters and pre-mRNA splicing.
View Article and Find Full Text PDF53BP1 regulates DNA double-strand break (DSB) repair. In functional assays for specific DSB repair pathways, we found that 53BP1 was important in the conservative non-homologous end-joining (C-NHEJ) pathway, and this activity was dependent upon RNF8 and RNF168. We observed that 53BP1 protein was diffusely abundant in nuclei, and upon ionizing radiation, 53BP1 was everywhere degraded except at DNA damage sites.
View Article and Find Full Text PDFFifteen percent of tumors utilize recombination-based alternative lengthening of telomeres (ALT) to maintain telomeres. The mechanisms underlying ALT are unclear but involve several proteins involved in homologous recombination including the BLM helicase, mutated in Bloom's syndrome, and the BRCA1 tumor suppressor. Cells deficient in either BLM or BRCA1 have phenotypes consistent with telomere dysfunction.
View Article and Find Full Text PDFSmall ubiquitin-like modifier (SUMO) proteins act in DNA double-strand break (DSB) repair, but the pathway specificity of the three major isoforms has not been defined. In experiments in which we depleted the endogenous SUMO protein by RNAi, we found that SUMO1 functioned in all subpathways of either homologous recombination (HR) or non-homologous end joining (NHEJ), whereas SUMO2/3 was required for the major NHEJ pathway, called conservative NHEJ, but dispensable in other DSB repair pathways. To our surprise, we found that depletion of UBC9, the unique SUMO E2 enzyme, had no effect in HR or alternative NHEJ (Alt-NHEJ) but was required for conservative NHEJ.
View Article and Find Full Text PDF