Cellulose nanocrystals (CNC) and nanofibers (CNF) have been broadly studied as renewable nanomaterials for various applications, including additives in cement and plastics composites. Herein, life cycle inventories for 18 previously examined processes are harmonized, and the impacts of CNC and CNF production are compared with a particular focus on GHG emissions. Findings show wide variations in GHG emissions between process designs, from 1.
View Article and Find Full Text PDFConcentrated suspensions of particles at volume fractions () ≥ 0.5 often exhibit complex rheological behavior, transitioning from shear thinning to shear thickening as the shear stress or shear rate is increased. These suspensions can be extruded to form 3D structures, with non-adsorbing polymers often added as rheology modifiers to improve printability.
View Article and Find Full Text PDFThe main objective of this study was to examine the impact of cellulose nanocrystals (CNCs) in advanced waterborne wood coatings such as polycarbonate urethane (PCU) and hybrid alkyd varnish (HAV) in terms of coating performance, mechanical properties, optical properties, and water permeation and uptake properties. The influence of CNCs on the overall quality of the various waterborne wood coatings was investigated by incorporating different percentages of CNCs. Varying CNC content in coating formulations showed that CNCs are effective for waterborne wood coatings; CNCs offer both higher scratch and impact resistance as compared to neat coatings and have a significant reduction in water vapor permeation through a film with little increase in water vapor uptake at high concentrations.
View Article and Find Full Text PDFLycopene, a natural colorant and antioxidant with a huge growing market, is highly susceptible to photo/thermal degradation, which demands real-time sensors. Hence, here a transparent upconversion nanoparticles (UCNPs) strip having 30 mol % Yb, 0.1 mol % Tm, and βNaYF UCNPs, which shows an intense emission at 475 nm, has been developed.
View Article and Find Full Text PDFThe mechanical properties of cellulose nanocrystal (CNC) films critically depend on many microstructural parameters such as fiber length distribution (FLD), fiber orientation distribution (FOD), and the strength of the interactions between the fibers. In this paper, we use our coarse-grained molecular model of CNC to study the effect of length and orientation distribution and attractions between CNCs on the mechanical properties of neat CNCs. The effect of misalignment of a 2D staggered structure of CNC with respect to the loading direction was studied with simulations and analytical solutions and then verified with experiments.
View Article and Find Full Text PDFCO and O gas permeability are paramount concerns in food packaging. Here, the permeability of cellulose nanocrystals (CNCs) and polyvinyl alcohol (PVA) coatings was explored as it relates to varied CNC content. Specifically, this work focuses on the role of PVA in rheology and barrier performance of the CNC films.
View Article and Find Full Text PDFIn nature, cellulose nanofibers form hierarchical structures across multiple length scales to achieve high-performance properties and different functionalities. Cellulose nanofibers, which are separated from plants or synthesized biologically, are being extensively investigated and processed into different materials owing to their good properties. The alignment of cellulose nanofibers is reported to significantly influence the performance of cellulose nanofiber-based materials.
View Article and Find Full Text PDFObjective: To synthesize and characterize a novel resin-based dental material containing 3-aminopropyltriethoxysilane (APTES) surface-modified halloysite-clay nanotubes (HNTs) for long-term delivery of guest molecules.
Methods: The optimal concentrations of HNT (10, 15, 20 wt.%) and silane (0, 2, 4 vol.
The in situ manufacture of cured-in-place-pipe (CIPP) plastic liners in damaged sewer pipes is an emerging mobile source of anthropogenic air pollution. Evidence indicates volatile organic compounds (VOCs) can be released before, during, and after manufacture. The chemical composition of a popular uncured styrene-based CIPP resin was examined, along with the VOCs that remained in the new cured composite.
View Article and Find Full Text PDFCellulose nanomaterials (CNMs) are a class of materials that have recently garnered attention in fields as varied as structural materials, biomaterials, rheology modifiers, construction, paper enhancement, and others. As the principal structural reinforcement of biomass giving wood its mechanical properties, CNM is strong and stiff, but also nontoxic, biodegradable, and sustainable with a very large (Gton yr ) source. Unfortunately, due to the relatively young nature of the field and inherent incompatibility of CNM with most man-made materials in use today, research has tended to be more basic-science oriented rather than commercially applicable, so there are few CNM-enabled products on the market today.
View Article and Find Full Text PDFCellulose nanocrystals (CNCs) are of increasing interest for packaging applications because of their biodegradability, low cost, high crystallinity, and high aspect ratio. The objective of this study was to use positron annihilation lifetime spectroscopy (PALS) to investigate the free volume of CNC films with different structural arrangements (chiral nematic vs shear-oriented CNC films) and relate this information to gas barrier performance. It was found that sheared CNC films with higher CNC alignment have lower free volume and hence have more tortuosity than chiral nematic self-assembled films, which lowers gas diffusion throughout the films.
View Article and Find Full Text PDFCured-in-place-pipes (CIPP) are plastic liners chemically manufactured inside existing damaged sewer pipes. They are gaining popularity in North America, Africa, Asia, Europe, and Oceania. Volatile and semi-volatile organic compound (VOC/SVOC) emissions from storm sewer CIPP installations were investigated at a dedicated outdoor research site.
View Article and Find Full Text PDFStorm water culverts are integral for U.S. public safety and welfare, and their mechanical failure can cause roadways to collapse.
View Article and Find Full Text PDFCellulose nanomaterials are promising materials for the polymer industry due to their abundance and renewability. In packaging applications, these materials may impart enhanced gas barrier performance due to their high crystallinity and polarity. In this work, low barrier to superior gas barrier pristine nanocellulose films were produced using a shear-coating technique to obtain a range of anisotropic films.
View Article and Find Full Text PDFTunable plasmonic structure at the nanometer scale presents enormous opportunities for various photonic devices. In this work, we present a hybrid plasmonic thin film platform: , a vertically aligned Au nanopillar array grown inside a TiN matrix with controllable Au pillar density. Compared to single phase plasmonic materials, the presented tunable hybrid nanostructures attain optical flexibility including gradual tuning and anisotropic behavior of the complex dielectric function, resonant peak shifting and change of surface plasmon resonances (SPRs) in the UV-visible range, all confirmed by numerical simulations.
View Article and Find Full Text PDFThere is an increasing interest in hierarchical design and additive manufacturing (AM) of cement-based materials. However, the brittle behavior of these materials and the presence of interfaces from the AM process currently present a major challenge. Contrary to the commonly adopted approach in AM of cement-based materials to eliminate the interfaces in 3D-printed hardened cement paste (hcp) elements, this work focuses on harnessing the heterogeneous interfaces by employing novel architectures (based on bioinspired Bouligand structures).
View Article and Find Full Text PDFLi-S batteries have received tremendous attention owing to their high theoretical capacity (1672 mA h g ), sulfur abundance, and low cost. However, main systemic issues, associated with polysulfide shuttling and low Coulombic efficiency, hinder the practical use of the sulfur electrode in commercial batteries. Herein, we demonstrate an effective strategy of decorating nano-MnO (less than 10 wt %) onto the sulfur reservoir to capture the out-diffused polysulfides through chemical interaction and thereby improve the electrochemical performance of the sulfur electrode without increasing the mass burden of total battery configuration.
View Article and Find Full Text PDFIn this study we demonstrate that lignin monomers formed as byproducts of pulping or bioprocessing of lignocellulosic biomass is an effective enhancer to oxidize cellulose surfaces with ozone for the production of cellulose nanofibers (CNF). Never dried softwood pulp with minimum mercerization was enzymatically treated leading to a homogeneous pulp slurry with a higher reactivity. The slurry was oxidized by ozone gas in the presence of syringic acid, a lignin degradation model compound, as an oxidation enhancer at room temperature and pH 11.
View Article and Find Full Text PDFThe main objective of this study is to develop microencapsulation technology for thermal energy storage incorporating a phase change material (PCM) in a composite wall shell, which can be used to create a stable environment and allow the PCM to undergo phase change without any outside influence. Surface modification of cellulose nanocrystals (CNCs) was conducted by grafting poly(lactic acid) oligomers and oleic acid to improve the dispersion of nanoparticles in a polymeric shell. A microencapsulated phase change material (methyl laurate) with poly(urea-urethane) (PU) composite shells containing the hydrophobized cellulose nanocrystals (hCNCs) was fabricated using an in situ emulsion interfacial polymerization process.
View Article and Find Full Text PDFThe main aim of this study is to verify whether cellulose nanocrystal (CNCs)-reinforced tung oil (TO) composites are effective for wood finishes and offer enhanced mechanical and weathering performance owing to the high strength, stiffness, and barrier properties of CNCs. To achieve even dispersion of CNC particles in a polymeric coating film, surface hydrophobization of the CNCs was carried out by grafting poly(lactic acid) oligomers and oleic acid. These new TO coating formulations contain 0 (controlled sample) to 10 wt % of hydrophobized cellulose nanocrystals (hCNCs).
View Article and Find Full Text PDFThe coefficient of hygroscopic swelling (CHS) of self-organized and shear-oriented cellulose nanocrystal (CNC) films was determined by capturing hygroscopic strains produced as result of isothermal water vapor intake in equilibrium. Contrast enhanced microscopy digital image correlation enabled the characterization of dimensional changes induced by the hygroscopic swelling of the films. The distinct microstructure and birefringence of CNC films served in exploring the in-plane hygroscopic swelling at relative humidity values ranging from 0% to 97%.
View Article and Find Full Text PDFThe aim of this study is to develop methods to reinforce polymeric microspheres with cellulose nanocrystals (CNCs) to make eco-friendly microcapsules for a variety of applications such as medicines, perfumes, nutrients, pesticides, and phase change materials. Surface hydrophobization treatments for CNCs were performed by grafting poly(lactic acid) oligomers and fatty acids (FAs) to enhance the dispersion of nanoparticles in the polymeric shell. Then, a straightforward process is demonstrated to design sustained release microcapsules by the incorporation of the modified CNCs (mCNCs) in the shell structure.
View Article and Find Full Text PDFWe report on the performance and the characterization of top-gate organic field-effect transistors (OFETs), comprising a bilayer gate dielectric of CYTOP/Al2O3 and a solution-processed semiconductor layer made of a blend of TIPS-pentacene:PTAA, fabricated on recyclable cellulose nanocrystal-glycerol (CNC/glycerol) substrates. These OFETs exhibit low operating voltage, low threshold voltage, an average field-effect mobility of 0.11 cm(2)/(V s), and good shelf and operational stability in ambient conditions.
View Article and Find Full Text PDF