Publications by authors named "Jeffrey P Froehlich"

Nitroxyl (HNO) donated by Angeli's salt activates uptake of Ca(2+) by the cardiac SR Ca(2+) pump (SERCA2a). To determine whether HNO achieves this by a direct interaction with SERCA2a or its regulatory protein, phospholamban (PLN), we measured its effects on SERCA2a activation (as reflected in dephosphorylation) using insect cell microsomes expressing SERCA2a with or without PLN (wild-type and Cys --> Ala mutant). The results show that activation of SERCA2a dephosphorylation by HNO is PLN-dependent and that PLN thiols are targets for HNO.

View Article and Find Full Text PDF

Native membrane sarcoplasmic reticulum (SR) Ca(2+)-ATPase isolated from skeletal muscle (SERCA1) exhibits oligomeric kinetic behavior [Mahaney, J. E., Thomas, D.

View Article and Find Full Text PDF

We have used steady-state fluorescence spectroscopy in combination with enzyme kinetic assays to test the hypothesis that phospholamban (PLB) stabilizes the Ca-ATPase in the E2 intermediate state. The cardiac muscle Ca-ATPase (SERCA2a) isoform was expressed either alone or coexpressed with PLB in High-Five insect cells and was isolated as insect cell microsomes. Fluorescence studies of the Ca-ATPase covalently labeled with the probe 5-(2-((iodoacetyl)amino)ethyl)aminonaphthalene-1-sulfonic acid showed that PLB decreased the amplitude of the Ca-ATPase E2 --> E1 conformational transition by 45 +/- 3% and shifted the [Ca2+] dependence of the transition to higher Ca2+ levels (DeltaKCa = 230 nM), similar to the effect of PLB on Ca-ATPase activity.

View Article and Find Full Text PDF

Heart failure remains a leading cause of morbidity and mortality worldwide. Although depressed pump function is common, development of effective therapies to stimulate contraction has proven difficult. This is thought to be attributable to their frequent reliance on cAMP stimulation to increase activator Ca(2+).

View Article and Find Full Text PDF

Activation of cardiac muscle sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) by beta1-agonists involves cAMP- and PKA-dependent phosphorylation of phospholamban (PLB), which relieves the inhibitory effects of PLB on SERCA2a. To investigate the mechanism of SERCA2a activation, we compared the kinetic properties of SERCA2a expressed with (+) and without (-) PLB in High Five insect cell microsomes to those of SERCA1 and SERCA2a in native skeletal and cardiac muscle SR. Both native SERCA1 and expressed SERCA2a without PLB exhibited high-affinity (10-50 microM) activation of pre-steady-state catalytic site dephosphorylation by ATP, steady-state accumulation of the ADP-sensitive phosphoenzyme (E1P), and a rapid phase of EGTA-induced phosphoenzyme (E2P) hydrolysis.

View Article and Find Full Text PDF

Quenched-flow mixing was used to characterize the kinetic behavior of the intermediate reactions of the skeletal muscle sarcoplasmic reticulum (SR) Ca-ATPase (SERCA1) at 2 and 21 degrees C. At 2 degrees C, phosphorylation of SR Ca-ATPase with 100 microM ATP labeled one-half of the catalytic sites with a biphasic time dependence [Mahaney, J. E.

View Article and Find Full Text PDF